File size: 2,053 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from opencompass.multimodal.models.minigpt_4 import (
    MiniGPT4VQAPromptConstructor,
    MiniGPT4VQAPostProcessor,
)

# dataloader settings
val_pipeline = [
    dict(type='mmpretrain.LoadImageFromFile'),
    dict(type='mmpretrain.ToPIL', to_rgb=True),
    dict(type='mmpretrain.torchvision/Resize',
         size=(224, 224),
         interpolation=3),
    dict(type='mmpretrain.torchvision/ToTensor'),
    dict(type='mmpretrain.torchvision/Normalize',
         mean=(0.48145466, 0.4578275, 0.40821073),
         std=(0.26862954, 0.26130258, 0.27577711)),
    dict(
        type='mmpretrain.PackInputs',
        algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'],
        meta_keys=['question_id', 'image_id'],
    )
]

dataset = dict(type='mmpretrain.GQA',
               data_root='data/gqa',
               data_prefix='images',
               ann_file='annotations/testdev_balanced_questions.json',
               pipeline=val_pipeline)

minigpt_4_gqa_dataloader = dict(batch_size=1,
                                num_workers=4,
                                dataset=dataset,
                                collate_fn=dict(type='pseudo_collate'),
                                sampler=dict(type='DefaultSampler',
                                             shuffle=False))

# model settings
minigpt_4_gqa_model = dict(type='minigpt-4',
                           low_resource=False,
                           img_size=224,
                           max_length=10,
                           llama_model='/path/to/vicuna_weights_7b/',
                           prompt_constructor=dict(
                               type=MiniGPT4VQAPromptConstructor,
                               image_prompt='###Human: <Img><ImageHere></Img>',
                               reply_prompt='###Assistant:'),
                           post_processor=dict(type=MiniGPT4VQAPostProcessor))

# evaluation settings
minigpt_4_gqa_evaluator = [dict(type='mmpretrain.GQAAcc')]

minigpt_4_gqa_load_from = '/path/to/prerained_minigpt4_7b.pth'  # noqa