File size: 15,100 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
"""Chat Inferencer."""
import os
import os.path as osp
from typing import List, Optional, Union

import mmengine
from mmengine import is_list_of
from tqdm import tqdm

from opencompass.models import APITemplateParser as _APITemplateParser
from opencompass.models import BaseModel
from opencompass.models import LMTemplateParser as _LMTemplateParser
from opencompass.registry import ICL_INFERENCERS
from opencompass.utils.prompt import PromptList

from ..icl_prompt_template import PromptTemplate
from ..icl_retriever import BaseRetriever
from ..utils.logging import get_logger
from .icl_base_inferencer import BaseInferencer, dump_results_dict

logger = get_logger(__name__)


def promptlist_to_openai(prompt: Union[str, PromptList]):
    output = []
    if isinstance(prompt, str):
        return [dict(role='user', content=prompt)]

    for item in prompt:
        if 'section' in item:
            continue
        if isinstance(item, str) and item:
            output.append(dict(role='user', content=item))
        elif item['role'] == 'SYSTEM':
            output.append(dict(role='system', content=item['prompt']))
        elif item['role'] == 'HUMAN':
            output.append(dict(role='user', content=item['prompt']))
        elif item['role'] == 'BOT':
            output.append(dict(role='assistant', content=item['prompt']))
    return output


class LMTemplateParser:
    """LMTemplateParser accepts OpenAI format dialog inputs."""

    def __init__(self, meta_template: Optional[dict] = None):
        self.meta_template = meta_template
        self.roles = {}
        role_mapping = {
            'SYSTEM': 'system',
            'HUMAN': 'user',
            'BOT': 'assistant',
        }
        if meta_template:
            for item in meta_template.get('round', []):
                role = role_mapping.get(item['role'], item['role'])
                self.roles[role] = item.copy()
            for item in meta_template.get('reserved_roles', []):
                role = role_mapping.get(item['role'], item['role'])
                self.roles[role] = item.copy()

    def parse_template(self, chat: List[dict], mode='gen') -> str:
        if is_list_of(chat, list):
            # Handle batch inputs
            return [self.parse_template(item) for item in chat]

        assert is_list_of(chat, dict)
        prompt = ''
        if self.roles:
            for dialog in chat:
                role_cfg = self.roles.get(dialog['role'], {})
                prompt += (role_cfg.get('begin') or '')
                prompt += (dialog.get('content') or '')
                prompt += (role_cfg.get('end') or '')
            prompt += (self.roles['assistant'].get('begin') or '')
        else:
            # in case the model does not have any meta template
            last_sep = ''
            for item in chat:
                prompt += last_sep + (item.get('content') or '')
                last_sep = '\n'
        return prompt


class APITemplateParser:
    """APITemplateParser accepts OpenAI format dialog inputs."""

    def __init__(self, meta_template: Optional[dict] = None):
        self.meta_template = meta_template
        self.roles = {}
        role_mapping = {
            'SYSTEM': 'system',
            'HUMAN': 'user',
            'BOT': 'assistant',
        }
        if meta_template:
            for item in meta_template.get('round', []):
                role = role_mapping.get(item['role'], item['role'])
                self.roles[role] = item.copy()
            for item in meta_template.get('reserved_roles', []):
                role = role_mapping.get(item['role'], item['role'])
                self.roles[role] = item.copy()
        else:
            self.roles = dict(
                system=dict(api_role='SYSTEM'),
                user=dict(api_role='HUMAN'),
                assistant=dict(api_role='BOT', generate=True),
            )

    def parse_template(self, chat: List[dict], mode='gen') -> str:
        if is_list_of(chat, list):
            # Handle batch inputs
            return [self.parse_template(item) for item in chat]

        assert is_list_of(chat, dict)
        prompt = []
        for dialog in chat:
            if dialog['role'] in self.roles:
                role = self.roles[dialog['role']]['api_role']
            else:
                role = dialog['role']
            prompt.append(dict(role=role, prompt=dialog.get('content') or ''))
        return PromptList(prompt)


class ChatOutputHandler:

    def __init__(self) -> None:
        self.results_dict = {}

    def write_to_json(self, save_dir: str, filename: str):
        """Dump the result to a json file."""
        dump_results_dict(self.results_dict, osp.join(save_dir, filename))

    def save_results(self,
                     origin_prompt: list,
                     prediction: str,
                     idx: int,
                     gold: str = None):
        result_dict = {}
        if gold:
            result_dict['gold'] = gold
        result_dict.update({
            'prediction': prediction,
            'origin_prompt': origin_prompt,
        })
        self.results_dict[str(idx)] = result_dict

    def save_multiround_results(self,
                                origin_prompt: list,
                                prediction: str,
                                idx: int,
                                gold: str = None):
        result_dict = self.results_dict.get(str(idx), {
            'gold': [],
            'prediction': [],
            'origin_prompt': [],
        })
        result_dict['gold'].append(gold)
        result_dict['prediction'].append(prediction)
        result_dict['origin_prompt'].append(origin_prompt)
        self.results_dict[str(idx)] = result_dict


@ICL_INFERENCERS.register_module()
class ChatInferencer(BaseInferencer):
    HandlerType = ChatOutputHandler

    def __init__(
            self,
            model,
            output_json_filepath: Optional[str] = './icl_inference_output',
            output_json_filename: Optional[str] = 'predictions',
            save_every: Optional[int] = 1,
            infer_mode: str = 'last',
            **kwargs) -> None:
        super().__init__(
            model=model,
            output_json_filename=output_json_filename,
            output_json_filepath=output_json_filepath,
            **kwargs,
        )
        assert infer_mode in ['last', 'every', 'every_with_gt']
        self.infer_mode = infer_mode
        self.model: BaseModel
        self._set_meta_template(self.model)

        if self.model.is_api and save_every is None:
            save_every = 1
        self.save_every = save_every
        self.dialogue_mode = False

    def _set_meta_template(self, model):
        origin = model.template_parser
        if isinstance(origin, _APITemplateParser):
            model.template_parser = APITemplateParser(origin.meta_template)
        if isinstance(origin, _LMTemplateParser):
            model.template_parser = LMTemplateParser(origin.meta_template)

    def inference(self,
                  retriever: BaseRetriever,
                  ice_template: Optional[PromptTemplate] = None,
                  prompt_template: Optional[PromptTemplate] = None,
                  output_json_filepath: Optional[str] = None,
                  output_json_filename: Optional[str] = None) -> dict:
        # 1. Preparation for output logs
        output_handler = self.HandlerType()

        if output_json_filepath is None:
            output_json_filepath = self.output_json_filepath
        if output_json_filename is None:
            output_json_filename = self.output_json_filename

        # 2. Get results of retrieval process
        ice_idx_list = retriever.retrieve()

        # 3. Generate prompts for testing input
        chat_list = self.get_chat_list(
            ice_idx_list,
            retriever,
            prompt_template=prompt_template,
        )

        # Create tmp json file for saving intermediate results and future
        # resuming
        index = 0
        tmp_json_filepath = os.path.join(output_json_filepath,
                                         'tmp_' + output_json_filename)
        if osp.exists(tmp_json_filepath):
            # TODO: move resume to output handler
            try:
                tmp_result_dict = mmengine.load(tmp_json_filepath)
            except Exception:
                pass
            else:
                output_handler.results_dict = tmp_result_dict
                index = len(tmp_result_dict)

        # 4. Wrap prompts with Dataloader
        dataloader = self.get_dataloader(chat_list[index:], batch_size=1)

        # 5. Inference for prompts in each batch
        logger.info('Starting inference process...')
        for datum in tqdm(dataloader, disable=not self.is_main_process):
            chat = datum[0]

            if self.infer_mode == 'last':
                self.infer_last(chat, index, output_handler)
            elif self.infer_mode == 'every':
                self.infer_every(chat, index, output_handler)
            elif self.infer_mode == 'every_with_gt':
                self.infer_every_with_gt(chat, index, output_handler)
            index += 1

            # Save intermediate results
            if (self.save_every is not None and index % self.save_every == 0
                    and self.is_main_process):
                output_handler.write_to_json(output_json_filepath,
                                             'tmp_' + output_json_filename)

        # 4. Output
        if self.is_main_process:
            os.makedirs(output_json_filepath, exist_ok=True)
            output_handler.write_to_json(output_json_filepath,
                                         output_json_filename)
            if osp.exists(tmp_json_filepath):
                os.remove(tmp_json_filepath)

        return output_handler.results_dict

    def get_chat_list(self,
                      ice_idx_list: List[List[int]],
                      retriever: BaseRetriever,
                      prompt_template: Optional[PromptTemplate] = None):
        prompt_list = []
        input_columns = retriever.dataset_reader.input_columns
        output_column = retriever.dataset_reader.output_column

        def chat_from_entry(entry):
            if prompt_template is None and len(input_columns) == 1:
                # Directly use the input column as the user input
                user = entry.get(input_columns[0])
                assistant = entry.get(output_column, '')
                return [
                    dict(role='user', content=user),
                    dict(role='assistant', content=assistant),
                ]
            elif prompt_template is not None:
                # Use prompt template to generate chat history
                chat = promptlist_to_openai(
                    prompt_template.generate_item(entry))
                gold = entry.get(output_column, '')
                if chat[-1]['role'] != 'assistant':
                    chat.append(dict(role='assistant', content=gold))
                return chat
            else:
                raise ValueError()

        for idx, ice_idx in enumerate(ice_idx_list):
            # NOTE: The in-context examples won't be used by now.

            item = {
                k: v
                for k, v in retriever.test_ds[idx].items()
                if k in input_columns or k == output_column
            }
            if all(isinstance(value, str) for value in item.values()):
                # Every column is a single string
                chat = chat_from_entry(item)
            elif all(is_list_of(value, str) for value in item.values()):
                # Every column is a list of string for multi-round chat
                entries = [dict(zip(item, v)) for v in zip(*item.values())]
                chat = sum((chat_from_entry(entry) for entry in entries), [])
            elif len(input_columns) == 1 and is_list_of(
                    item[input_columns[0]], dict):
                # Single input column and it's already a chat.
                chat = item[input_columns[0]]
            elif 'dialogue' in input_columns:
                chat = item['dialogue']
                self.dialogue_mode = True
            else:
                raise ValueError('Cannot construct chat from the dataset.')

            prompt_list.append(chat)
        return prompt_list

    def infer_last(self, chat: List[dict], index: int, output_handler):
        assistant_indices = [
            i for i, item in enumerate(chat) if item['role'] == 'assistant'
        ]

        history = chat[:assistant_indices[-1]]
        output = self.model.generate_from_template([history],
                                                   max_out_len=512)[0]
        output_handler.save_results(
            origin_prompt=history,
            prediction=output,
            idx=index,
            gold=chat[assistant_indices[-1]]['content'],
        )

    def infer_every(self, chat: List[dict], index: int, output_handler):
        assistant_indices = [
            i for i, item in enumerate(chat) if item['role'] == 'assistant'
        ]
        index_copy = index

        for i in assistant_indices:
            history = chat[:i]
            output = self.model.generate_from_template([history],
                                                       max_out_len=512)[0]
            chat[i]['content'] = output
            if not self.dialogue_mode:
                output_handler.save_multiround_results(
                    origin_prompt=history[-1]['content'],
                    prediction=output,
                    idx=index,
                    gold=chat[i]['content'],
                )
                index += 1
        if self.dialogue_mode:
            # dialogue mode for subjective evaluation
            assert len(chat) % 2 == 0
            round_num = int(len(chat) / 2)
            preds_list = []
            for i in range(round_num):
                temp_dict = {
                    'round': i + 1,
                    'user': chat[i * 2]['content'],
                    'assistant': chat[i * 2 + 1]['content']
                }
                preds_list.append(temp_dict)
            output_handler.save_results(
                origin_prompt=None,
                prediction=preds_list,
                idx=index_copy,
                gold=None,
            )

    def infer_every_with_gt(self, chat: List[dict], index: int,
                            output_handler):
        assistant_indices = [
            i for i, item in enumerate(chat) if item['role'] == 'assistant'
        ]

        for i in assistant_indices:
            history = chat[:i]
            output = self.model.generate_from_template([history],
                                                       max_out_len=512)[0]
            output_handler.save_multiround_results(
                origin_prompt=history[-1]['content'],
                prediction=output,
                idx=index,
                gold=chat[i]['content'],
            )
            index += 1