File size: 58,269 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
datasets=[
    dict(abbr='siqa',
        eval_cfg=dict(
            evaluator=dict(
                type='opencompass.openicl.icl_evaluator.EDAccEvaluator'),
            pred_role='BOT'),
        infer_cfg=dict(
            inferencer=dict(
                type='opencompass.openicl.icl_inferencer.GenInferencer'),
            prompt_template=dict(
                template=dict(
                    round=[
                        dict(prompt='{context}\nQuestion: {question}\nA. {answerA}\nB. {answerB}\nC. {answerC}\nAnswer:',
                            role='HUMAN'),
                        ]),
                type='opencompass.openicl.icl_prompt_template.PromptTemplate'),
            retriever=dict(
                type='opencompass.openicl.icl_retriever.ZeroRetriever')),
        path='./data/siqa',
        reader_cfg=dict(
            input_columns=[
                'context',
                'question',
                'answerA',
                'answerB',
                'answerC',
                ],
            output_column='all_labels',
            test_split='validation'),
        type='opencompass.datasets.siqaDataset_V2'),
    ]
models=[
    dict(abbr='my_api',
        batch_size=8,
        key='http://127.0.0.1:12345/testing',
        max_out_len=4096,
        max_seq_len=4096,
        meta_template=dict(
            round=[
                dict(api_role='HUMAN',
                    role='HUMAN'),
                dict(api_role='BOT',
                    generate=True,
                    role='BOT'),
                ]),
        path='my_api',
        query_per_second=1,
        type='opencompass.models.my_api'),
    ]
summarizer=dict(
    summary_groups=[
        dict(name='agieval-chinese',
            subsets=[
                'agieval-gaokao-chinese',
                'agieval-gaokao-english',
                'agieval-gaokao-geography',
                'agieval-gaokao-history',
                'agieval-gaokao-biology',
                'agieval-gaokao-chemistry',
                'agieval-gaokao-physics',
                'agieval-gaokao-mathqa',
                'agieval-logiqa-zh',
                'agieval-jec-qa-kd',
                'agieval-jec-qa-ca',
                'agieval-gaokao-mathcloze',
                ]),
        dict(name='agieval-english',
            subsets=[
                'agieval-lsat-ar',
                'agieval-lsat-lr',
                'agieval-lsat-rc',
                'agieval-logiqa-en',
                'agieval-sat-math',
                'agieval-sat-en',
                'agieval-sat-en-without-passage',
                'agieval-aqua-rat',
                'agieval-math',
                ]),
        dict(name='agieval-gaokao',
            subsets=[
                'agieval-gaokao-chinese',
                'agieval-gaokao-english',
                'agieval-gaokao-geography',
                'agieval-gaokao-history',
                'agieval-gaokao-biology',
                'agieval-gaokao-chemistry',
                'agieval-gaokao-physics',
                'agieval-gaokao-mathqa',
                'agieval-gaokao-mathcloze',
                ]),
        dict(name='agieval',
            subsets=[
                'agieval-gaokao-chinese',
                'agieval-gaokao-english',
                'agieval-gaokao-geography',
                'agieval-gaokao-history',
                'agieval-gaokao-biology',
                'agieval-gaokao-chemistry',
                'agieval-gaokao-physics',
                'agieval-gaokao-mathqa',
                'agieval-logiqa-zh',
                'agieval-lsat-ar',
                'agieval-lsat-lr',
                'agieval-lsat-rc',
                'agieval-logiqa-en',
                'agieval-sat-math',
                'agieval-sat-en',
                'agieval-sat-en-without-passage',
                'agieval-aqua-rat',
                'agieval-jec-qa-kd',
                'agieval-jec-qa-ca',
                'agieval-gaokao-mathcloze',
                'agieval-math',
                ]),
        dict(name='mmlu-humanities',
            subsets=[
                'lukaemon_mmlu_formal_logic',
                'lukaemon_mmlu_high_school_european_history',
                'lukaemon_mmlu_high_school_us_history',
                'lukaemon_mmlu_high_school_world_history',
                'lukaemon_mmlu_international_law',
                'lukaemon_mmlu_jurisprudence',
                'lukaemon_mmlu_logical_fallacies',
                'lukaemon_mmlu_moral_disputes',
                'lukaemon_mmlu_moral_scenarios',
                'lukaemon_mmlu_philosophy',
                'lukaemon_mmlu_prehistory',
                'lukaemon_mmlu_professional_law',
                'lukaemon_mmlu_world_religions',
                ]),
        dict(name='mmlu-stem',
            subsets=[
                'lukaemon_mmlu_abstract_algebra',
                'lukaemon_mmlu_anatomy',
                'lukaemon_mmlu_astronomy',
                'lukaemon_mmlu_college_biology',
                'lukaemon_mmlu_college_chemistry',
                'lukaemon_mmlu_college_computer_science',
                'lukaemon_mmlu_college_mathematics',
                'lukaemon_mmlu_college_physics',
                'lukaemon_mmlu_computer_security',
                'lukaemon_mmlu_conceptual_physics',
                'lukaemon_mmlu_electrical_engineering',
                'lukaemon_mmlu_elementary_mathematics',
                'lukaemon_mmlu_high_school_biology',
                'lukaemon_mmlu_high_school_chemistry',
                'lukaemon_mmlu_high_school_computer_science',
                'lukaemon_mmlu_high_school_mathematics',
                'lukaemon_mmlu_high_school_physics',
                'lukaemon_mmlu_high_school_statistics',
                'lukaemon_mmlu_machine_learning',
                ]),
        dict(name='mmlu-social-science',
            subsets=[
                'lukaemon_mmlu_econometrics',
                'lukaemon_mmlu_high_school_geography',
                'lukaemon_mmlu_high_school_government_and_politics',
                'lukaemon_mmlu_high_school_macroeconomics',
                'lukaemon_mmlu_high_school_microeconomics',
                'lukaemon_mmlu_high_school_psychology',
                'lukaemon_mmlu_human_sexuality',
                'lukaemon_mmlu_professional_psychology',
                'lukaemon_mmlu_public_relations',
                'lukaemon_mmlu_security_studies',
                'lukaemon_mmlu_sociology',
                'lukaemon_mmlu_us_foreign_policy',
                ]),
        dict(name='mmlu-other',
            subsets=[
                'lukaemon_mmlu_business_ethics',
                'lukaemon_mmlu_clinical_knowledge',
                'lukaemon_mmlu_college_medicine',
                'lukaemon_mmlu_global_facts',
                'lukaemon_mmlu_human_aging',
                'lukaemon_mmlu_management',
                'lukaemon_mmlu_marketing',
                'lukaemon_mmlu_medical_genetics',
                'lukaemon_mmlu_miscellaneous',
                'lukaemon_mmlu_nutrition',
                'lukaemon_mmlu_professional_accounting',
                'lukaemon_mmlu_professional_medicine',
                'lukaemon_mmlu_virology',
                ]),
        dict(name='mmlu',
            subsets=[
                'lukaemon_mmlu_formal_logic',
                'lukaemon_mmlu_high_school_european_history',
                'lukaemon_mmlu_high_school_us_history',
                'lukaemon_mmlu_high_school_world_history',
                'lukaemon_mmlu_international_law',
                'lukaemon_mmlu_jurisprudence',
                'lukaemon_mmlu_logical_fallacies',
                'lukaemon_mmlu_moral_disputes',
                'lukaemon_mmlu_moral_scenarios',
                'lukaemon_mmlu_philosophy',
                'lukaemon_mmlu_prehistory',
                'lukaemon_mmlu_professional_law',
                'lukaemon_mmlu_world_religions',
                'lukaemon_mmlu_abstract_algebra',
                'lukaemon_mmlu_anatomy',
                'lukaemon_mmlu_astronomy',
                'lukaemon_mmlu_college_biology',
                'lukaemon_mmlu_college_chemistry',
                'lukaemon_mmlu_college_computer_science',
                'lukaemon_mmlu_college_mathematics',
                'lukaemon_mmlu_college_physics',
                'lukaemon_mmlu_computer_security',
                'lukaemon_mmlu_conceptual_physics',
                'lukaemon_mmlu_electrical_engineering',
                'lukaemon_mmlu_elementary_mathematics',
                'lukaemon_mmlu_high_school_biology',
                'lukaemon_mmlu_high_school_chemistry',
                'lukaemon_mmlu_high_school_computer_science',
                'lukaemon_mmlu_high_school_mathematics',
                'lukaemon_mmlu_high_school_physics',
                'lukaemon_mmlu_high_school_statistics',
                'lukaemon_mmlu_machine_learning',
                'lukaemon_mmlu_econometrics',
                'lukaemon_mmlu_high_school_geography',
                'lukaemon_mmlu_high_school_government_and_politics',
                'lukaemon_mmlu_high_school_macroeconomics',
                'lukaemon_mmlu_high_school_microeconomics',
                'lukaemon_mmlu_high_school_psychology',
                'lukaemon_mmlu_human_sexuality',
                'lukaemon_mmlu_professional_psychology',
                'lukaemon_mmlu_public_relations',
                'lukaemon_mmlu_security_studies',
                'lukaemon_mmlu_sociology',
                'lukaemon_mmlu_us_foreign_policy',
                'lukaemon_mmlu_business_ethics',
                'lukaemon_mmlu_clinical_knowledge',
                'lukaemon_mmlu_college_medicine',
                'lukaemon_mmlu_global_facts',
                'lukaemon_mmlu_human_aging',
                'lukaemon_mmlu_management',
                'lukaemon_mmlu_marketing',
                'lukaemon_mmlu_medical_genetics',
                'lukaemon_mmlu_miscellaneous',
                'lukaemon_mmlu_nutrition',
                'lukaemon_mmlu_professional_accounting',
                'lukaemon_mmlu_professional_medicine',
                'lukaemon_mmlu_virology',
                ]),
        dict(name='mmlu-weighted',
            subsets=[
                'lukaemon_mmlu_formal_logic',
                'lukaemon_mmlu_high_school_european_history',
                'lukaemon_mmlu_high_school_us_history',
                'lukaemon_mmlu_high_school_world_history',
                'lukaemon_mmlu_international_law',
                'lukaemon_mmlu_jurisprudence',
                'lukaemon_mmlu_logical_fallacies',
                'lukaemon_mmlu_moral_disputes',
                'lukaemon_mmlu_moral_scenarios',
                'lukaemon_mmlu_philosophy',
                'lukaemon_mmlu_prehistory',
                'lukaemon_mmlu_professional_law',
                'lukaemon_mmlu_world_religions',
                'lukaemon_mmlu_abstract_algebra',
                'lukaemon_mmlu_anatomy',
                'lukaemon_mmlu_astronomy',
                'lukaemon_mmlu_college_biology',
                'lukaemon_mmlu_college_chemistry',
                'lukaemon_mmlu_college_computer_science',
                'lukaemon_mmlu_college_mathematics',
                'lukaemon_mmlu_college_physics',
                'lukaemon_mmlu_computer_security',
                'lukaemon_mmlu_conceptual_physics',
                'lukaemon_mmlu_electrical_engineering',
                'lukaemon_mmlu_elementary_mathematics',
                'lukaemon_mmlu_high_school_biology',
                'lukaemon_mmlu_high_school_chemistry',
                'lukaemon_mmlu_high_school_computer_science',
                'lukaemon_mmlu_high_school_mathematics',
                'lukaemon_mmlu_high_school_physics',
                'lukaemon_mmlu_high_school_statistics',
                'lukaemon_mmlu_machine_learning',
                'lukaemon_mmlu_econometrics',
                'lukaemon_mmlu_high_school_geography',
                'lukaemon_mmlu_high_school_government_and_politics',
                'lukaemon_mmlu_high_school_macroeconomics',
                'lukaemon_mmlu_high_school_microeconomics',
                'lukaemon_mmlu_high_school_psychology',
                'lukaemon_mmlu_human_sexuality',
                'lukaemon_mmlu_professional_psychology',
                'lukaemon_mmlu_public_relations',
                'lukaemon_mmlu_security_studies',
                'lukaemon_mmlu_sociology',
                'lukaemon_mmlu_us_foreign_policy',
                'lukaemon_mmlu_business_ethics',
                'lukaemon_mmlu_clinical_knowledge',
                'lukaemon_mmlu_college_medicine',
                'lukaemon_mmlu_global_facts',
                'lukaemon_mmlu_human_aging',
                'lukaemon_mmlu_management',
                'lukaemon_mmlu_marketing',
                'lukaemon_mmlu_medical_genetics',
                'lukaemon_mmlu_miscellaneous',
                'lukaemon_mmlu_nutrition',
                'lukaemon_mmlu_professional_accounting',
                'lukaemon_mmlu_professional_medicine',
                'lukaemon_mmlu_virology',
                ],
            weights=dict(
                lukaemon_mmlu_abstract_algebra=100,
                lukaemon_mmlu_anatomy=135,
                lukaemon_mmlu_astronomy=152,
                lukaemon_mmlu_business_ethics=100,
                lukaemon_mmlu_clinical_knowledge=265,
                lukaemon_mmlu_college_biology=144,
                lukaemon_mmlu_college_chemistry=100,
                lukaemon_mmlu_college_computer_science=100,
                lukaemon_mmlu_college_mathematics=100,
                lukaemon_mmlu_college_medicine=173,
                lukaemon_mmlu_college_physics=102,
                lukaemon_mmlu_computer_security=100,
                lukaemon_mmlu_conceptual_physics=235,
                lukaemon_mmlu_econometrics=114,
                lukaemon_mmlu_electrical_engineering=145,
                lukaemon_mmlu_elementary_mathematics=378,
                lukaemon_mmlu_formal_logic=126,
                lukaemon_mmlu_global_facts=100,
                lukaemon_mmlu_high_school_biology=310,
                lukaemon_mmlu_high_school_chemistry=203,
                lukaemon_mmlu_high_school_computer_science=100,
                lukaemon_mmlu_high_school_european_history=165,
                lukaemon_mmlu_high_school_geography=198,
                lukaemon_mmlu_high_school_government_and_politics=193,
                lukaemon_mmlu_high_school_macroeconomics=390,
                lukaemon_mmlu_high_school_mathematics=270,
                lukaemon_mmlu_high_school_microeconomics=238,
                lukaemon_mmlu_high_school_physics=151,
                lukaemon_mmlu_high_school_psychology=545,
                lukaemon_mmlu_high_school_statistics=216,
                lukaemon_mmlu_high_school_us_history=204,
                lukaemon_mmlu_high_school_world_history=237,
                lukaemon_mmlu_human_aging=223,
                lukaemon_mmlu_human_sexuality=131,
                lukaemon_mmlu_international_law=121,
                lukaemon_mmlu_jurisprudence=108,
                lukaemon_mmlu_logical_fallacies=163,
                lukaemon_mmlu_machine_learning=112,
                lukaemon_mmlu_management=103,
                lukaemon_mmlu_marketing=234,
                lukaemon_mmlu_medical_genetics=100,
                lukaemon_mmlu_miscellaneous=783,
                lukaemon_mmlu_moral_disputes=346,
                lukaemon_mmlu_moral_scenarios=895,
                lukaemon_mmlu_nutrition=306,
                lukaemon_mmlu_philosophy=311,
                lukaemon_mmlu_prehistory=324,
                lukaemon_mmlu_professional_accounting=282,
                lukaemon_mmlu_professional_law=1534,
                lukaemon_mmlu_professional_medicine=272,
                lukaemon_mmlu_professional_psychology=612,
                lukaemon_mmlu_public_relations=110,
                lukaemon_mmlu_security_studies=245,
                lukaemon_mmlu_sociology=201,
                lukaemon_mmlu_us_foreign_policy=100,
                lukaemon_mmlu_virology=166,
                lukaemon_mmlu_world_religions=171)),
        dict(name='cmmlu-humanities',
            subsets=[
                'cmmlu-arts',
                'cmmlu-chinese_history',
                'cmmlu-chinese_literature',
                'cmmlu-college_law',
                'cmmlu-global_facts',
                'cmmlu-international_law',
                'cmmlu-jurisprudence',
                'cmmlu-logical',
                'cmmlu-marxist_theory',
                'cmmlu-philosophy',
                'cmmlu-professional_law',
                'cmmlu-world_history',
                'cmmlu-world_religions',
                ]),
        dict(name='cmmlu-stem',
            subsets=[
                'cmmlu-anatomy',
                'cmmlu-astronomy',
                'cmmlu-college_actuarial_science',
                'cmmlu-college_engineering_hydrology',
                'cmmlu-college_mathematics',
                'cmmlu-college_medical_statistics',
                'cmmlu-computer_science',
                'cmmlu-conceptual_physics',
                'cmmlu-electrical_engineering',
                'cmmlu-elementary_mathematics',
                'cmmlu-genetics',
                'cmmlu-high_school_biology',
                'cmmlu-high_school_chemistry',
                'cmmlu-high_school_mathematics',
                'cmmlu-high_school_physics',
                'cmmlu-machine_learning',
                'cmmlu-virology',
                ]),
        dict(name='cmmlu-social-science',
            subsets=[
                'cmmlu-ancient_chinese',
                'cmmlu-business_ethics',
                'cmmlu-chinese_civil_service_exam',
                'cmmlu-chinese_food_culture',
                'cmmlu-chinese_foreign_policy',
                'cmmlu-chinese_teacher_qualification',
                'cmmlu-college_education',
                'cmmlu-economics',
                'cmmlu-education',
                'cmmlu-elementary_chinese',
                'cmmlu-ethnology',
                'cmmlu-high_school_geography',
                'cmmlu-high_school_politics',
                'cmmlu-journalism',
                'cmmlu-management',
                'cmmlu-marketing',
                'cmmlu-modern_chinese',
                'cmmlu-professional_accounting',
                'cmmlu-professional_psychology',
                'cmmlu-public_relations',
                'cmmlu-security_study',
                'cmmlu-sociology',
                ]),
        dict(name='cmmlu-other',
            subsets=[
                'cmmlu-agronomy',
                'cmmlu-chinese_driving_rule',
                'cmmlu-clinical_knowledge',
                'cmmlu-college_medicine',
                'cmmlu-computer_security',
                'cmmlu-construction_project_management',
                'cmmlu-elementary_commonsense',
                'cmmlu-elementary_information_and_technology',
                'cmmlu-food_science',
                'cmmlu-human_sexuality',
                'cmmlu-legal_and_moral_basis',
                'cmmlu-nutrition',
                'cmmlu-professional_medicine',
                'cmmlu-sports_science',
                'cmmlu-traditional_chinese_medicine',
                ]),
        dict(name='cmmlu-china-specific',
            subsets=[
                'cmmlu-ancient_chinese',
                'cmmlu-chinese_civil_service_exam',
                'cmmlu-chinese_driving_rule',
                'cmmlu-chinese_food_culture',
                'cmmlu-chinese_foreign_policy',
                'cmmlu-chinese_history',
                'cmmlu-chinese_literature',
                'cmmlu-chinese_teacher_qualification',
                'cmmlu-construction_project_management',
                'cmmlu-elementary_chinese',
                'cmmlu-elementary_commonsense',
                'cmmlu-ethnology',
                'cmmlu-high_school_politics',
                'cmmlu-modern_chinese',
                'cmmlu-traditional_chinese_medicine',
                ]),
        dict(name='cmmlu',
            subsets=[
                'cmmlu-agronomy',
                'cmmlu-anatomy',
                'cmmlu-ancient_chinese',
                'cmmlu-arts',
                'cmmlu-astronomy',
                'cmmlu-business_ethics',
                'cmmlu-chinese_civil_service_exam',
                'cmmlu-chinese_driving_rule',
                'cmmlu-chinese_food_culture',
                'cmmlu-chinese_foreign_policy',
                'cmmlu-chinese_history',
                'cmmlu-chinese_literature',
                'cmmlu-chinese_teacher_qualification',
                'cmmlu-college_actuarial_science',
                'cmmlu-college_education',
                'cmmlu-college_engineering_hydrology',
                'cmmlu-college_law',
                'cmmlu-college_mathematics',
                'cmmlu-college_medical_statistics',
                'cmmlu-clinical_knowledge',
                'cmmlu-college_medicine',
                'cmmlu-computer_science',
                'cmmlu-computer_security',
                'cmmlu-conceptual_physics',
                'cmmlu-construction_project_management',
                'cmmlu-economics',
                'cmmlu-education',
                'cmmlu-elementary_chinese',
                'cmmlu-elementary_commonsense',
                'cmmlu-elementary_information_and_technology',
                'cmmlu-electrical_engineering',
                'cmmlu-elementary_mathematics',
                'cmmlu-ethnology',
                'cmmlu-food_science',
                'cmmlu-genetics',
                'cmmlu-global_facts',
                'cmmlu-high_school_biology',
                'cmmlu-high_school_chemistry',
                'cmmlu-high_school_geography',
                'cmmlu-high_school_mathematics',
                'cmmlu-high_school_physics',
                'cmmlu-high_school_politics',
                'cmmlu-human_sexuality',
                'cmmlu-international_law',
                'cmmlu-journalism',
                'cmmlu-jurisprudence',
                'cmmlu-legal_and_moral_basis',
                'cmmlu-logical',
                'cmmlu-machine_learning',
                'cmmlu-management',
                'cmmlu-marketing',
                'cmmlu-marxist_theory',
                'cmmlu-modern_chinese',
                'cmmlu-nutrition',
                'cmmlu-philosophy',
                'cmmlu-professional_accounting',
                'cmmlu-professional_law',
                'cmmlu-professional_medicine',
                'cmmlu-professional_psychology',
                'cmmlu-public_relations',
                'cmmlu-security_study',
                'cmmlu-sociology',
                'cmmlu-sports_science',
                'cmmlu-traditional_chinese_medicine',
                'cmmlu-virology',
                'cmmlu-world_history',
                'cmmlu-world_religions',
                ]),
        dict(name='ceval-stem',
            subsets=[
                'ceval-computer_network',
                'ceval-operating_system',
                'ceval-computer_architecture',
                'ceval-college_programming',
                'ceval-college_physics',
                'ceval-college_chemistry',
                'ceval-advanced_mathematics',
                'ceval-probability_and_statistics',
                'ceval-discrete_mathematics',
                'ceval-electrical_engineer',
                'ceval-metrology_engineer',
                'ceval-high_school_mathematics',
                'ceval-high_school_physics',
                'ceval-high_school_chemistry',
                'ceval-high_school_biology',
                'ceval-middle_school_mathematics',
                'ceval-middle_school_biology',
                'ceval-middle_school_physics',
                'ceval-middle_school_chemistry',
                'ceval-veterinary_medicine',
                ]),
        dict(name='ceval-social-science',
            subsets=[
                'ceval-college_economics',
                'ceval-business_administration',
                'ceval-marxism',
                'ceval-mao_zedong_thought',
                'ceval-education_science',
                'ceval-teacher_qualification',
                'ceval-high_school_politics',
                'ceval-high_school_geography',
                'ceval-middle_school_politics',
                'ceval-middle_school_geography',
                ]),
        dict(name='ceval-humanities',
            subsets=[
                'ceval-modern_chinese_history',
                'ceval-ideological_and_moral_cultivation',
                'ceval-logic',
                'ceval-law',
                'ceval-chinese_language_and_literature',
                'ceval-art_studies',
                'ceval-professional_tour_guide',
                'ceval-legal_professional',
                'ceval-high_school_chinese',
                'ceval-high_school_history',
                'ceval-middle_school_history',
                ]),
        dict(name='ceval-other',
            subsets=[
                'ceval-civil_servant',
                'ceval-sports_science',
                'ceval-plant_protection',
                'ceval-basic_medicine',
                'ceval-clinical_medicine',
                'ceval-urban_and_rural_planner',
                'ceval-accountant',
                'ceval-fire_engineer',
                'ceval-environmental_impact_assessment_engineer',
                'ceval-tax_accountant',
                'ceval-physician',
                ]),
        dict(name='ceval-hard',
            subsets=[
                'ceval-advanced_mathematics',
                'ceval-discrete_mathematics',
                'ceval-probability_and_statistics',
                'ceval-college_chemistry',
                'ceval-college_physics',
                'ceval-high_school_mathematics',
                'ceval-high_school_chemistry',
                'ceval-high_school_physics',
                ]),
        dict(name='ceval',
            subsets=[
                'ceval-computer_network',
                'ceval-operating_system',
                'ceval-computer_architecture',
                'ceval-college_programming',
                'ceval-college_physics',
                'ceval-college_chemistry',
                'ceval-advanced_mathematics',
                'ceval-probability_and_statistics',
                'ceval-discrete_mathematics',
                'ceval-electrical_engineer',
                'ceval-metrology_engineer',
                'ceval-high_school_mathematics',
                'ceval-high_school_physics',
                'ceval-high_school_chemistry',
                'ceval-high_school_biology',
                'ceval-middle_school_mathematics',
                'ceval-middle_school_biology',
                'ceval-middle_school_physics',
                'ceval-middle_school_chemistry',
                'ceval-veterinary_medicine',
                'ceval-college_economics',
                'ceval-business_administration',
                'ceval-marxism',
                'ceval-mao_zedong_thought',
                'ceval-education_science',
                'ceval-teacher_qualification',
                'ceval-high_school_politics',
                'ceval-high_school_geography',
                'ceval-middle_school_politics',
                'ceval-middle_school_geography',
                'ceval-modern_chinese_history',
                'ceval-ideological_and_moral_cultivation',
                'ceval-logic',
                'ceval-law',
                'ceval-chinese_language_and_literature',
                'ceval-art_studies',
                'ceval-professional_tour_guide',
                'ceval-legal_professional',
                'ceval-high_school_chinese',
                'ceval-high_school_history',
                'ceval-middle_school_history',
                'ceval-civil_servant',
                'ceval-sports_science',
                'ceval-plant_protection',
                'ceval-basic_medicine',
                'ceval-clinical_medicine',
                'ceval-urban_and_rural_planner',
                'ceval-accountant',
                'ceval-fire_engineer',
                'ceval-environmental_impact_assessment_engineer',
                'ceval-tax_accountant',
                'ceval-physician',
                ]),
        dict(name='ceval-test-stem',
            subsets=[
                'ceval-test-computer_network',
                'ceval-test-operating_system',
                'ceval-test-computer_architecture',
                'ceval-test-college_programming',
                'ceval-test-college_physics',
                'ceval-test-college_chemistry',
                'ceval-test-advanced_mathematics',
                'ceval-test-probability_and_statistics',
                'ceval-test-discrete_mathematics',
                'ceval-test-electrical_engineer',
                'ceval-test-metrology_engineer',
                'ceval-test-high_school_mathematics',
                'ceval-test-high_school_physics',
                'ceval-test-high_school_chemistry',
                'ceval-test-high_school_biology',
                'ceval-test-middle_school_mathematics',
                'ceval-test-middle_school_biology',
                'ceval-test-middle_school_physics',
                'ceval-test-middle_school_chemistry',
                'ceval-test-veterinary_medicine',
                ]),
        dict(name='ceval-test-social-science',
            subsets=[
                'ceval-test-college_economics',
                'ceval-test-business_administration',
                'ceval-test-marxism',
                'ceval-test-mao_zedong_thought',
                'ceval-test-education_science',
                'ceval-test-teacher_qualification',
                'ceval-test-high_school_politics',
                'ceval-test-high_school_geography',
                'ceval-test-middle_school_politics',
                'ceval-test-middle_school_geography',
                ]),
        dict(name='ceval-test-humanities',
            subsets=[
                'ceval-test-modern_chinese_history',
                'ceval-test-ideological_and_moral_cultivation',
                'ceval-test-logic',
                'ceval-test-law',
                'ceval-test-chinese_language_and_literature',
                'ceval-test-art_studies',
                'ceval-test-professional_tour_guide',
                'ceval-test-legal_professional',
                'ceval-test-high_school_chinese',
                'ceval-test-high_school_history',
                'ceval-test-middle_school_history',
                ]),
        dict(name='ceval-test-other',
            subsets=[
                'ceval-test-civil_servant',
                'ceval-test-sports_science',
                'ceval-test-plant_protection',
                'ceval-test-basic_medicine',
                'ceval-test-clinical_medicine',
                'ceval-test-urban_and_rural_planner',
                'ceval-test-accountant',
                'ceval-test-fire_engineer',
                'ceval-test-environmental_impact_assessment_engineer',
                'ceval-test-tax_accountant',
                'ceval-test-physician',
                ]),
        dict(name='ceval-test-hard',
            subsets=[
                'ceval-test-advanced_mathematics',
                'ceval-test-discrete_mathematics',
                'ceval-test-probability_and_statistics',
                'ceval-test-college_chemistry',
                'ceval-test-college_physics',
                'ceval-test-high_school_mathematics',
                'ceval-test-high_school_chemistry',
                'ceval-test-high_school_physics',
                ]),
        dict(name='ceval-test',
            subsets=[
                'ceval-test-computer_network',
                'ceval-test-operating_system',
                'ceval-test-computer_architecture',
                'ceval-test-college_programming',
                'ceval-test-college_physics',
                'ceval-test-college_chemistry',
                'ceval-test-advanced_mathematics',
                'ceval-test-probability_and_statistics',
                'ceval-test-discrete_mathematics',
                'ceval-test-electrical_engineer',
                'ceval-test-metrology_engineer',
                'ceval-test-high_school_mathematics',
                'ceval-test-high_school_physics',
                'ceval-test-high_school_chemistry',
                'ceval-test-high_school_biology',
                'ceval-test-middle_school_mathematics',
                'ceval-test-middle_school_biology',
                'ceval-test-middle_school_physics',
                'ceval-test-middle_school_chemistry',
                'ceval-test-veterinary_medicine',
                'ceval-test-college_economics',
                'ceval-test-business_administration',
                'ceval-test-marxism',
                'ceval-test-mao_zedong_thought',
                'ceval-test-education_science',
                'ceval-test-teacher_qualification',
                'ceval-test-high_school_politics',
                'ceval-test-high_school_geography',
                'ceval-test-middle_school_politics',
                'ceval-test-middle_school_geography',
                'ceval-test-modern_chinese_history',
                'ceval-test-ideological_and_moral_cultivation',
                'ceval-test-logic',
                'ceval-test-law',
                'ceval-test-chinese_language_and_literature',
                'ceval-test-art_studies',
                'ceval-test-professional_tour_guide',
                'ceval-test-legal_professional',
                'ceval-test-high_school_chinese',
                'ceval-test-high_school_history',
                'ceval-test-middle_school_history',
                'ceval-test-civil_servant',
                'ceval-test-sports_science',
                'ceval-test-plant_protection',
                'ceval-test-basic_medicine',
                'ceval-test-clinical_medicine',
                'ceval-test-urban_and_rural_planner',
                'ceval-test-accountant',
                'ceval-test-fire_engineer',
                'ceval-test-environmental_impact_assessment_engineer',
                'ceval-test-tax_accountant',
                'ceval-test-physician',
                ]),
        dict(name='bbh',
            subsets=[
                'bbh-temporal_sequences',
                'bbh-disambiguation_qa',
                'bbh-date_understanding',
                'bbh-tracking_shuffled_objects_three_objects',
                'bbh-penguins_in_a_table',
                'bbh-geometric_shapes',
                'bbh-snarks',
                'bbh-ruin_names',
                'bbh-tracking_shuffled_objects_seven_objects',
                'bbh-tracking_shuffled_objects_five_objects',
                'bbh-logical_deduction_three_objects',
                'bbh-hyperbaton',
                'bbh-logical_deduction_five_objects',
                'bbh-logical_deduction_seven_objects',
                'bbh-movie_recommendation',
                'bbh-salient_translation_error_detection',
                'bbh-reasoning_about_colored_objects',
                'bbh-multistep_arithmetic_two',
                'bbh-navigate',
                'bbh-dyck_languages',
                'bbh-word_sorting',
                'bbh-sports_understanding',
                'bbh-boolean_expressions',
                'bbh-object_counting',
                'bbh-formal_fallacies',
                'bbh-causal_judgement',
                'bbh-web_of_lies',
                ]),
        dict(name='GaokaoBench',
            subsets=[
                'GaokaoBench_2010-2022_Math_II_MCQs',
                'GaokaoBench_2010-2022_Math_I_MCQs',
                'GaokaoBench_2010-2022_History_MCQs',
                'GaokaoBench_2010-2022_Biology_MCQs',
                'GaokaoBench_2010-2022_Political_Science_MCQs',
                'GaokaoBench_2010-2022_Physics_MCQs',
                'GaokaoBench_2010-2022_Chemistry_MCQs',
                'GaokaoBench_2010-2013_English_MCQs',
                'GaokaoBench_2010-2022_Chinese_Modern_Lit',
                'GaokaoBench_2010-2022_English_Fill_in_Blanks',
                'GaokaoBench_2012-2022_English_Cloze_Test',
                'GaokaoBench_2010-2022_Geography_MCQs',
                'GaokaoBench_2010-2022_English_Reading_Comp',
                'GaokaoBench_2010-2022_Chinese_Lang_and_Usage_MCQs',
                ],
            weights=dict(
                {'GaokaoBench_2010-2013_English_MCQs': 105,
                'GaokaoBench_2010-2022_Biology_MCQs': 900,
                'GaokaoBench_2010-2022_Chemistry_MCQs': 744,
                'GaokaoBench_2010-2022_Chinese_Lang_and_Usage_MCQs': 240,
                'GaokaoBench_2010-2022_Chinese_Modern_Lit': 261,
                'GaokaoBench_2010-2022_English_Fill_in_Blanks': 900.0,
                'GaokaoBench_2010-2022_English_Reading_Comp': 940,
                'GaokaoBench_2010-2022_Geography_MCQs': 380,
                'GaokaoBench_2010-2022_History_MCQs': 1148,
                'GaokaoBench_2010-2022_Math_II_MCQs': 1090,
                'GaokaoBench_2010-2022_Math_I_MCQs': 1070,
                'GaokaoBench_2010-2022_Physics_MCQs': 384,
                'GaokaoBench_2010-2022_Political_Science_MCQs': 1280,
                'GaokaoBench_2012-2022_English_Cloze_Test': 260})),
        dict(name='flores_100_Indo-European-Germanic_English',
            subsets=[
                'flores_100_afr-eng',
                'flores_100_dan-eng',
                'flores_100_deu-eng',
                'flores_100_isl-eng',
                'flores_100_ltz-eng',
                'flores_100_nld-eng',
                'flores_100_nob-eng',
                'flores_100_swe-eng',
                ]),
        dict(name='flores_100_English_Indo-European-Germanic',
            subsets=[
                'flores_100_eng-afr',
                'flores_100_eng-dan',
                'flores_100_eng-deu',
                'flores_100_eng-isl',
                'flores_100_eng-ltz',
                'flores_100_eng-nld',
                'flores_100_eng-nob',
                'flores_100_eng-swe',
                ]),
        dict(name='flores_100_Indo-European-Romance_English',
            subsets=[
                'flores_100_ast-eng',
                'flores_100_cat-eng',
                'flores_100_fra-eng',
                'flores_100_glg-eng',
                'flores_100_oci-eng',
                'flores_100_por-eng',
                'flores_100_ron-eng',
                'flores_100_spa-eng',
                ]),
        dict(name='flores_100_English_Indo-European-Romance',
            subsets=[
                'flores_100_eng-ast',
                'flores_100_eng-cat',
                'flores_100_eng-fra',
                'flores_100_eng-glg',
                'flores_100_eng-oci',
                'flores_100_eng-por',
                'flores_100_eng-ron',
                'flores_100_eng-spa',
                ]),
        dict(name='flores_100_Indo-European-Slavic_English',
            subsets=[
                'flores_100_bel-eng',
                'flores_100_bos-eng',
                'flores_100_bul-eng',
                'flores_100_ces-eng',
                'flores_100_hrv-eng',
                'flores_100_mkd-eng',
                'flores_100_pol-eng',
                'flores_100_rus-eng',
                'flores_100_slk-eng',
                'flores_100_slv-eng',
                'flores_100_srp-eng',
                'flores_100_ukr-eng',
                ]),
        dict(name='flores_100_English_Indo-European-Slavic',
            subsets=[
                'flores_100_eng-bel',
                'flores_100_eng-bos',
                'flores_100_eng-bul',
                'flores_100_eng-ces',
                'flores_100_eng-hrv',
                'flores_100_eng-mkd',
                'flores_100_eng-pol',
                'flores_100_eng-rus',
                'flores_100_eng-slk',
                'flores_100_eng-slv',
                'flores_100_eng-srp',
                'flores_100_eng-ukr',
                ]),
        dict(name='flores_100_Indo-European-Indo-Aryan_English',
            subsets=[
                'flores_100_asm-eng',
                'flores_100_ben-eng',
                'flores_100_guj-eng',
                'flores_100_hin-eng',
                'flores_100_mar-eng',
                'flores_100_npi-eng',
                'flores_100_ory-eng',
                'flores_100_pan-eng',
                'flores_100_snd-eng',
                'flores_100_urd-eng',
                ]),
        dict(name='flores_100_English_Indo-European-Indo-Aryan',
            subsets=[
                'flores_100_eng-asm',
                'flores_100_eng-ben',
                'flores_100_eng-guj',
                'flores_100_eng-hin',
                'flores_100_eng-mar',
                'flores_100_eng-npi',
                'flores_100_eng-ory',
                'flores_100_eng-pan',
                'flores_100_eng-snd',
                'flores_100_eng-urd',
                ]),
        dict(name='flores_100_Indo-European-Other_English',
            subsets=[
                'flores_100_ckb-eng',
                'flores_100_cym-eng',
                'flores_100_ell-eng',
                'flores_100_fas-eng',
                'flores_100_gle-eng',
                'flores_100_hye-eng',
                'flores_100_ita-eng',
                'flores_100_lav-eng',
                'flores_100_lit-eng',
                'flores_100_pus-eng',
                'flores_100_tgk-eng',
                ]),
        dict(name='flores_100_English_Indo-European-Other',
            subsets=[
                'flores_100_eng-ckb',
                'flores_100_eng-cym',
                'flores_100_eng-ell',
                'flores_100_eng-fas',
                'flores_100_eng-gle',
                'flores_100_eng-hye',
                'flores_100_eng-ita',
                'flores_100_eng-lav',
                'flores_100_eng-lit',
                'flores_100_eng-pus',
                'flores_100_eng-tgk',
                ]),
        dict(name='flores_100_Austronesian_English',
            subsets=[
                'flores_100_ceb-eng',
                'flores_100_ind-eng',
                'flores_100_jav-eng',
                'flores_100_mri-eng',
                'flores_100_msa-eng',
                'flores_100_tgl-eng',
                ]),
        dict(name='flores_100_English_Austronesian',
            subsets=[
                'flores_100_eng-ceb',
                'flores_100_eng-ind',
                'flores_100_eng-jav',
                'flores_100_eng-mri',
                'flores_100_eng-msa',
                'flores_100_eng-tgl',
                ]),
        dict(name='flores_100_Atlantic-Congo_English',
            subsets=[
                'flores_100_ibo-eng',
                'flores_100_kam-eng',
                'flores_100_kea-eng',
                'flores_100_lin-eng',
                'flores_100_lug-eng',
                'flores_100_nso-eng',
                'flores_100_nya-eng',
                'flores_100_sna-eng',
                'flores_100_swh-eng',
                'flores_100_umb-eng',
                'flores_100_wol-eng',
                'flores_100_xho-eng',
                'flores_100_yor-eng',
                'flores_100_zul-eng',
                ]),
        dict(name='flores_100_English_Atlantic-Congo',
            subsets=[
                'flores_100_eng-ibo',
                'flores_100_eng-kam',
                'flores_100_eng-kea',
                'flores_100_eng-lin',
                'flores_100_eng-lug',
                'flores_100_eng-nso',
                'flores_100_eng-nya',
                'flores_100_eng-sna',
                'flores_100_eng-swh',
                'flores_100_eng-umb',
                'flores_100_eng-wol',
                'flores_100_eng-xho',
                'flores_100_eng-yor',
                'flores_100_eng-zul',
                ]),
        dict(name='flores_100_Afro-Asiatic_English',
            subsets=[
                'flores_100_amh-eng',
                'flores_100_ara-eng',
                'flores_100_ful-eng',
                'flores_100_mlt-eng',
                'flores_100_orm-eng',
                'flores_100_som-eng',
                ]),
        dict(name='flores_100_English_Afro-Asiatic',
            subsets=[
                'flores_100_eng-amh',
                'flores_100_eng-ara',
                'flores_100_eng-ful',
                'flores_100_eng-mlt',
                'flores_100_eng-orm',
                'flores_100_eng-som',
                ]),
        dict(name='flores_100_Turkic_English',
            subsets=[
                'flores_100_azj-eng',
                'flores_100_kaz-eng',
                'flores_100_kir-eng',
                'flores_100_tur-eng',
                'flores_100_uzb-eng',
                ]),
        dict(name='flores_100_English_Turkic',
            subsets=[
                'flores_100_eng-azj',
                'flores_100_eng-kaz',
                'flores_100_eng-kir',
                'flores_100_eng-tur',
                'flores_100_eng-uzb',
                ]),
        dict(name='flores_100_Dravidian_English',
            subsets=[
                'flores_100_kan-eng',
                'flores_100_mal-eng',
                'flores_100_tam-eng',
                'flores_100_tel-eng',
                ]),
        dict(name='flores_100_English_Dravidian',
            subsets=[
                'flores_100_eng-kan',
                'flores_100_eng-mal',
                'flores_100_eng-tam',
                'flores_100_eng-tel',
                ]),
        dict(name='flores_100_Sino-Tibetan_English',
            subsets=[
                'flores_100_mya-eng',
                'flores_100_zho_simpl-eng',
                'flores_100_zho_trad-eng',
                ]),
        dict(name='flores_100_English_Sino-Tibetan',
            subsets=[
                'flores_100_eng-mya',
                'flores_100_eng-zho_simpl',
                'flores_100_eng-zho_trad',
                ]),
        dict(name='flores_100_Other_English',
            subsets=[
                'flores_100_est-eng',
                'flores_100_fin-eng',
                'flores_100_hau-eng',
                'flores_100_heb-eng',
                'flores_100_hun-eng',
                'flores_100_jpn-eng',
                'flores_100_kat-eng',
                'flores_100_khm-eng',
                'flores_100_kor-eng',
                'flores_100_lao-eng',
                'flores_100_luo-eng',
                'flores_100_mon-eng',
                'flores_100_tha-eng',
                'flores_100_vie-eng',
                ]),
        dict(name='flores_100_English_Other',
            subsets=[
                'flores_100_eng-est',
                'flores_100_eng-fin',
                'flores_100_eng-hau',
                'flores_100_eng-heb',
                'flores_100_eng-hun',
                'flores_100_eng-jpn',
                'flores_100_eng-kat',
                'flores_100_eng-khm',
                'flores_100_eng-kor',
                'flores_100_eng-lao',
                'flores_100_eng-luo',
                'flores_100_eng-mon',
                'flores_100_eng-tha',
                'flores_100_eng-vie',
                ]),
        dict(name='flores_100',
            subsets=[
                'flores_100_afr-eng',
                'flores_100_dan-eng',
                'flores_100_deu-eng',
                'flores_100_isl-eng',
                'flores_100_ltz-eng',
                'flores_100_nld-eng',
                'flores_100_nob-eng',
                'flores_100_swe-eng',
                'flores_100_ast-eng',
                'flores_100_cat-eng',
                'flores_100_fra-eng',
                'flores_100_glg-eng',
                'flores_100_oci-eng',
                'flores_100_por-eng',
                'flores_100_ron-eng',
                'flores_100_spa-eng',
                'flores_100_bel-eng',
                'flores_100_bos-eng',
                'flores_100_bul-eng',
                'flores_100_ces-eng',
                'flores_100_hrv-eng',
                'flores_100_mkd-eng',
                'flores_100_pol-eng',
                'flores_100_rus-eng',
                'flores_100_slk-eng',
                'flores_100_slv-eng',
                'flores_100_srp-eng',
                'flores_100_ukr-eng',
                'flores_100_asm-eng',
                'flores_100_ben-eng',
                'flores_100_guj-eng',
                'flores_100_hin-eng',
                'flores_100_mar-eng',
                'flores_100_npi-eng',
                'flores_100_ory-eng',
                'flores_100_pan-eng',
                'flores_100_snd-eng',
                'flores_100_urd-eng',
                'flores_100_ckb-eng',
                'flores_100_cym-eng',
                'flores_100_ell-eng',
                'flores_100_fas-eng',
                'flores_100_gle-eng',
                'flores_100_hye-eng',
                'flores_100_ita-eng',
                'flores_100_lav-eng',
                'flores_100_lit-eng',
                'flores_100_pus-eng',
                'flores_100_tgk-eng',
                'flores_100_ceb-eng',
                'flores_100_ind-eng',
                'flores_100_jav-eng',
                'flores_100_mri-eng',
                'flores_100_msa-eng',
                'flores_100_tgl-eng',
                'flores_100_ibo-eng',
                'flores_100_kam-eng',
                'flores_100_kea-eng',
                'flores_100_lin-eng',
                'flores_100_lug-eng',
                'flores_100_nso-eng',
                'flores_100_nya-eng',
                'flores_100_sna-eng',
                'flores_100_swh-eng',
                'flores_100_umb-eng',
                'flores_100_wol-eng',
                'flores_100_xho-eng',
                'flores_100_yor-eng',
                'flores_100_zul-eng',
                'flores_100_amh-eng',
                'flores_100_ara-eng',
                'flores_100_ful-eng',
                'flores_100_mlt-eng',
                'flores_100_orm-eng',
                'flores_100_som-eng',
                'flores_100_azj-eng',
                'flores_100_kaz-eng',
                'flores_100_kir-eng',
                'flores_100_tur-eng',
                'flores_100_uzb-eng',
                'flores_100_kan-eng',
                'flores_100_mal-eng',
                'flores_100_tam-eng',
                'flores_100_tel-eng',
                'flores_100_mya-eng',
                'flores_100_zho_simpl-eng',
                'flores_100_zho_trad-eng',
                'flores_100_est-eng',
                'flores_100_fin-eng',
                'flores_100_hau-eng',
                'flores_100_heb-eng',
                'flores_100_hun-eng',
                'flores_100_jpn-eng',
                'flores_100_kat-eng',
                'flores_100_khm-eng',
                'flores_100_kor-eng',
                'flores_100_lao-eng',
                'flores_100_luo-eng',
                'flores_100_mon-eng',
                'flores_100_tha-eng',
                'flores_100_vie-eng',
                'flores_100_eng-afr',
                'flores_100_eng-dan',
                'flores_100_eng-deu',
                'flores_100_eng-isl',
                'flores_100_eng-ltz',
                'flores_100_eng-nld',
                'flores_100_eng-nob',
                'flores_100_eng-swe',
                'flores_100_eng-ast',
                'flores_100_eng-cat',
                'flores_100_eng-fra',
                'flores_100_eng-glg',
                'flores_100_eng-oci',
                'flores_100_eng-por',
                'flores_100_eng-ron',
                'flores_100_eng-spa',
                'flores_100_eng-bel',
                'flores_100_eng-bos',
                'flores_100_eng-bul',
                'flores_100_eng-ces',
                'flores_100_eng-hrv',
                'flores_100_eng-mkd',
                'flores_100_eng-pol',
                'flores_100_eng-rus',
                'flores_100_eng-slk',
                'flores_100_eng-slv',
                'flores_100_eng-srp',
                'flores_100_eng-ukr',
                'flores_100_eng-asm',
                'flores_100_eng-ben',
                'flores_100_eng-guj',
                'flores_100_eng-hin',
                'flores_100_eng-mar',
                'flores_100_eng-npi',
                'flores_100_eng-ory',
                'flores_100_eng-pan',
                'flores_100_eng-snd',
                'flores_100_eng-urd',
                'flores_100_eng-ckb',
                'flores_100_eng-cym',
                'flores_100_eng-ell',
                'flores_100_eng-fas',
                'flores_100_eng-gle',
                'flores_100_eng-hye',
                'flores_100_eng-ita',
                'flores_100_eng-lav',
                'flores_100_eng-lit',
                'flores_100_eng-pus',
                'flores_100_eng-tgk',
                'flores_100_eng-ceb',
                'flores_100_eng-ind',
                'flores_100_eng-jav',
                'flores_100_eng-mri',
                'flores_100_eng-msa',
                'flores_100_eng-tgl',
                'flores_100_eng-ibo',
                'flores_100_eng-kam',
                'flores_100_eng-kea',
                'flores_100_eng-lin',
                'flores_100_eng-lug',
                'flores_100_eng-nso',
                'flores_100_eng-nya',
                'flores_100_eng-sna',
                'flores_100_eng-swh',
                'flores_100_eng-umb',
                'flores_100_eng-wol',
                'flores_100_eng-xho',
                'flores_100_eng-yor',
                'flores_100_eng-zul',
                'flores_100_eng-amh',
                'flores_100_eng-ara',
                'flores_100_eng-ful',
                'flores_100_eng-mlt',
                'flores_100_eng-orm',
                'flores_100_eng-som',
                'flores_100_eng-azj',
                'flores_100_eng-kaz',
                'flores_100_eng-kir',
                'flores_100_eng-tur',
                'flores_100_eng-uzb',
                'flores_100_eng-kan',
                'flores_100_eng-mal',
                'flores_100_eng-tam',
                'flores_100_eng-tel',
                'flores_100_eng-mya',
                'flores_100_eng-zho_simpl',
                'flores_100_eng-zho_trad',
                'flores_100_eng-est',
                'flores_100_eng-fin',
                'flores_100_eng-hau',
                'flores_100_eng-heb',
                'flores_100_eng-hun',
                'flores_100_eng-jpn',
                'flores_100_eng-kat',
                'flores_100_eng-khm',
                'flores_100_eng-kor',
                'flores_100_eng-lao',
                'flores_100_eng-luo',
                'flores_100_eng-mon',
                'flores_100_eng-tha',
                'flores_100_eng-vie',
                ]),
        dict(name='tydiqa-goldp',
            subsets=[
                'tydiqa-goldp_arabic',
                'tydiqa-goldp_bengali',
                'tydiqa-goldp_english',
                'tydiqa-goldp_finnish',
                'tydiqa-goldp_indonesian',
                'tydiqa-goldp_japanese',
                'tydiqa-goldp_korean',
                'tydiqa-goldp_russian',
                'tydiqa-goldp_swahili',
                'tydiqa-goldp_telugu',
                'tydiqa-goldp_thai',
                ]),
        dict(name='xiezhi',
            subsets=[
                'xiezhi-spec_eng',
                'xiezhi-spec_chn',
                'xiezhi-inter_eng',
                'xiezhi-inter_chn',
                ]),
        dict(name='scibench',
            subsets=[
                'scibench-atkins',
                'scibench-calculus',
                'scibench-chemmc',
                'scibench-class',
                'scibench-diff',
                'scibench-fund',
                'scibench-matter',
                'scibench-quan',
                'scibench-stat',
                'scibench-thermo',
                ]),
        dict(name='scibench_zs-cot',
            subsets=[
                'scibench-atkins_zs-cot',
                'scibench-calculus_zs-cot',
                'scibench-chemmc_zs-cot',
                'scibench-class_zs-cot',
                'scibench-diff_zs-cot',
                'scibench-fund_zs-cot',
                'scibench-matter_zs-cot',
                'scibench-quan_zs-cot',
                'scibench-stat_zs-cot',
                'scibench-thermo_zs-cot',
                ]),
        dict(name='scibench_fs',
            subsets=[
                'scibench-atkins_fs',
                'scibench-calculus_fs',
                'scibench-chemmc_fs',
                'scibench-class_fs',
                'scibench-diff_fs',
                'scibench-fund_fs',
                'scibench-matter_fs',
                'scibench-quan_fs',
                'scibench-stat_fs',
                'scibench-thermo_fs',
                ]),
        dict(name='scibench_fs-cot',
            subsets=[
                'scibench-atkins_fs-cot',
                'scibench-calculus_fs-cot',
                'scibench-chemmc_fs-cot',
                'scibench-class_fs-cot',
                'scibench-diff_fs-cot',
                'scibench-fund_fs-cot',
                'scibench-matter_fs-cot',
                'scibench-quan_fs-cot',
                'scibench-stat_fs-cot',
                'scibench-thermo_fs-cot',
                ]),
        ])
work_dir='./outputs/default/20240306_160151'