File size: 7,506 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import json
import os
import os.path as osp
import re

import mmengine
from mmengine import Config
from mmengine.utils import mkdir_or_exist

from opencompass.datasets.humanevalx import _clean_up_code
from opencompass.utils import (dataset_abbr_from_cfg, get_infer_output_path,
                               get_logger, model_abbr_from_cfg)


def parse_args():
    parser = argparse.ArgumentParser(
        description='Collect Humanevalx dataset predictions.')
    parser.add_argument('config', help='Config file path')
    parser.add_argument('-r',
                        '--reuse',
                        nargs='?',
                        type=str,
                        const='latest',
                        help='Reuse previous outputs & results, and run any '
                        'missing jobs presented in the config. If its '
                        'argument is not specified, the latest results in '
                        'the work_dir will be reused. The argument should '
                        'also be a specific timestamp, e.g. 20230516_144254'),
    args = parser.parse_args()
    return args


_LANGUAGE_NAME_DICT = {
    'cpp': 'CPP',
    'go': 'Go',
    'java': 'Java',
    'js': 'JavaScript',
    'python': 'Python',
    'rust': 'Rust',
}
FAILED = 0
SUCCEED = 1


def gpt_python_postprocess(ori_prompt: str, text: str) -> str:
    """Better answer postprocessor for better instruction-aligned models like
    GPT."""
    if '```' in text:
        blocks = re.findall(r'```(.*?)```', text, re.DOTALL)
        if len(blocks) == 0:
            text = text.split('```')[1]  # fall back to default strategy
        else:
            text = blocks[0]  # fetch the first code block
            if not text.startswith('\n'):  # in case starting with ```python
                text = text[max(text.find('\n') + 1, 0):]

    match_ori = re.search(r'def(.*?)\(', ori_prompt)
    match = re.search(r'def(.*?)\(', text)
    if match:
        if match.group() == match_ori.group():
            text = re.sub('def(.*?)\n', '', text, count=1)

    for c_index, c in enumerate(text[:5]):
        if c != ' ':
            text = ' ' * (4 - c_index) + text
            break

    text = text.split('\n\n\n')[0]
    return text


def wizardcoder_postprocess(text: str) -> str:
    """Postprocess for WizardCoder Models."""
    if '```' in text:
        blocks = re.findall(r'```(.*?)```', text, re.DOTALL)
        if len(blocks) == 0:
            text = text.split('```')[1]  # fall back to default strategy
        else:
            text = blocks[0]  # fetch the first code block
            if not text.startswith('\n'):  # in case starting with ```python
                text = text[max(text.find('\n') + 1, 0):]
    else:
        match = re.search(r'Here(.*?)\n', text)
        if match:
            text = re.sub('Here(.*?)\n', '', text, count=1)

    return text


def collect_preds(filename: str):
    # in case the prediction is partial
    root, ext = osp.splitext(filename)
    partial_filename = root + '_0' + ext
    # collect all the prediction results
    if not osp.exists(osp.realpath(filename)) and not osp.exists(
            osp.realpath(partial_filename)):
        print(f'No predictions found for {filename}')
        return FAILED, None, None
    else:
        if osp.exists(osp.realpath(filename)):
            preds = mmengine.load(filename)
            pred_strs = [
                preds[str(i)]['prediction'] for i in range(len(preds))
            ]
            ori_prompt_strs = [
                preds[str(i)]['origin_prompt'] for i in range(len(preds))
            ]
        else:
            filename = partial_filename
            pred_strs = []
            ori_prompt_strs = []
            i = 1
            while osp.exists(osp.realpath(filename)):
                preds = mmengine.load(filename)
                filename = root + f'_{i}' + ext
                i += 1
                pred_strs += [
                    preds[str(i)]['prediction'] for i in range(len(preds))
                ]
                ori_prompt_strs += [
                    preds[str(i)]['origin_prompt'] for i in range(len(preds))
                ]
        return SUCCEED, ori_prompt_strs, pred_strs


def main():
    args = parse_args()
    # initialize logger
    logger = get_logger(log_level='INFO')
    cfg = Config.fromfile(args.config)
    cfg.setdefault('work_dir', './outputs/default/')

    assert args.reuse, 'Please provide the experienment work dir.'
    if args.reuse:
        if args.reuse == 'latest':
            if not os.path.exists(cfg.work_dir) or not os.listdir(
                    cfg.work_dir):
                logger.warning('No previous results to reuse!')
            else:
                dirs = os.listdir(cfg.work_dir)
                dir_time_str = sorted(dirs)[-1]
        else:
            dir_time_str = args.reuse
        logger.info(f'Reusing experiements from {dir_time_str}')
    # update "actual" work_dir
    cfg['work_dir'] = osp.join(cfg.work_dir, dir_time_str)

    for model in cfg.models:
        model_abbr = model_abbr_from_cfg(model)
        for dataset in cfg.datasets:
            dataset_abbr = dataset_abbr_from_cfg(dataset)
            filename = get_infer_output_path(
                model, dataset, osp.join(cfg.work_dir, 'predictions'))

            succeed, ori_prompt_strs, pred_strs = collect_preds(filename)
            if not succeed:
                continue

            # infer the language type
            for k, v in _LANGUAGE_NAME_DICT.items():
                if k in dataset_abbr:
                    lang = k
                    task = v
                    break

            # special postprocess for GPT
            if model_abbr in [
                    'WizardCoder-1B-V1.0',
                    'WizardCoder-3B-V1.0',
                    'WizardCoder-15B-V1.0',
                    'WizardCoder-Python-13B-V1.0',
                    'WizardCoder-Python-34B-V1.0',
            ]:
                predictions = [{
                    'task_id': f'{task}/{i}',
                    'generation': wizardcoder_postprocess(pred),
                } for i, pred in enumerate(pred_strs)]
            elif 'CodeLlama' not in model_abbr and lang == 'python':
                predictions = [{
                    'task_id':
                    f'{task}/{i}',
                    'generation':
                    gpt_python_postprocess(ori_prompt, pred),
                } for i, (ori_prompt,
                          pred) in enumerate(zip(ori_prompt_strs, pred_strs))]
            else:
                predictions = [{
                    'task_id': f'{task}/{i}',
                    'generation': _clean_up_code(pred, lang),
                } for i, pred in enumerate(pred_strs)]

            # save processed results if not exists
            result_file_path = os.path.join(cfg['work_dir'], 'humanevalx',
                                            model_abbr,
                                            f'humanevalx_{lang}.json')
            if osp.exists(result_file_path):
                logger.info(
                    f'File exists for {model_abbr}, skip copy from predictions.'  # noqa
                )
            else:
                mkdir_or_exist(osp.split(result_file_path)[0])
                with open(result_file_path, 'w') as f:
                    for pred in predictions:
                        f.write(json.dumps(pred) + '\n')


if __name__ == '__main__':
    main()