File size: 11,947 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
# Usage: python eval_mmbench.py mmbench_dev_inference_result.xlsx
import argparse
import json
import os.path as osp
import pickle
import random as rd
import string
from collections import defaultdict
import numpy as np
import pandas as pd
from tqdm import tqdm
from opencompass.models import OpenAI
fout = None
# Utils
def double_log(msg, fout=None):
print(msg)
if fout is not None:
fout.write(str(msg) + '\n')
fout.flush()
def dump(data, f):
def dump_pkl(data, pth):
pickle.dump(data, open(pth, 'wb'))
def dump_json(data, pth):
json.dump(data, open(pth, 'w'))
def dump_jsonl(data, f):
lines = [json.dumps(x, ensure_ascii=False) for x in data]
with open(f, 'w', encoding='utf8') as fout:
fout.write('\n'.join(lines))
def dump_xlsx(data, f):
data.to_excel(f, index=False)
def dump_csv(data, f):
data.to_csv(f, index=False)
def dump_tsv(data, f):
data.to_csv(f, sep='\t', index=False)
handlers = dict(pkl=dump_pkl,
json=dump_json,
jsonl=dump_jsonl,
xlsx=dump_xlsx,
csv=dump_csv,
tsv=dump_tsv)
suffix = f.split('.')[-1]
return handlers[suffix](data, f)
def load(f):
def load_pkl(pth):
return pickle.load(open(pth, 'rb'))
def load_json(pth):
return json.load(open(pth, 'r', encoding='utf-8'))
def load_jsonl(f):
lines = open(f, encoding='utf-8').readlines()
lines = [x.strip() for x in lines]
if lines[-1] == '':
lines = lines[:-1]
data = [json.loads(x) for x in lines]
return data
def load_xlsx(f):
return pd.read_excel(f)
def load_csv(f):
return pd.read_csv(f)
def load_tsv(f):
return pd.read_csv(f, sep='\t')
handlers = dict(pkl=load_pkl,
json=load_json,
jsonl=load_jsonl,
xlsx=load_xlsx,
csv=load_csv,
tsv=load_tsv)
suffix = f.split('.')[-1]
return handlers[suffix](f)
# Accuracy Report
def report_acc(df, group='category'):
assert 'split' in df
assert group in [None, 'category', 'l2-category']
res = defaultdict(list)
res['split'] = ['full', 'dev', 'test']
if group is None:
res['overall'] = [
np.mean(df['hit']),
np.mean(df[df['split'] == 'dev']['hit']),
np.mean(df[df['split'] == 'test']['hit'])
]
return pd.DataFrame(res)
elif group in df:
abilities = list(set(df[group]))
abilities.sort()
for ab in abilities:
sub_df = df[df[group] == ab]
res[ab] = [
np.mean(sub_df['hit']),
np.mean(sub_df[sub_df['split'] == 'dev']['hit']),
np.mean(sub_df[sub_df['split'] == 'test']['hit'])
]
return pd.DataFrame(res)
# Prompt Building
def build_option_str(option_list):
chars = string.ascii_uppercase
s = 'There are several options: \n'
for c, opt in zip(chars, option_list):
if not pd.isna(opt):
s += f'{c}. {opt}\n'
else:
return s
return s
def extract_options(item):
options = []
for c in 'ABCD':
if c in item and not pd.isna(item[c]):
options.append(item[c])
else:
return options
return options
def build_choices(item):
ret = {}
for ch in 'ABCD':
if not pd.isna(item[ch]):
ret[ch] = item[ch]
return ret
def build_prompt(question, options, prediction):
tmpl = (
'You are an AI assistant who will help me to match an answer '
'with several options of a single-choice question. '
'You are provided with a question, several options, and an answer, '
'and you need to find which option is most similar to the answer. '
'If the meaning of all options are significantly different '
'from the answer, output E. '
'Your should output a single uppercase character in A, B, C, D '
'(if they are valid options), and E. \n'
'Example 1: \n'
'Question: What is the main object in image?\nOptions: A. teddy bear '
'B. rabbit C. cat D. dog\nAnswer: a cute teddy bear\nYour output: A\n'
'Example 2: \n'
'Question: What is the main object in image?\nOptions: A. teddy bear '
'B. rabbit C. cat D. dog\nAnswer: Spider\nYour output: E\n'
'Example 3: \n'
'Question: {}?\nOptions: {}\nAnswer: {}\nYour output: ')
return tmpl.format(question, options, prediction)
# Prefetch Answers
def can_infer_option(answer, num_choice=5):
choices = string.ascii_uppercase[:num_choice]
if 'Failed to obtain answer via API' in answer:
return False
def count(splits, choices='ABCD', prefix='', suffix=''):
cnt = 0
for c in choices:
if prefix + c + suffix in splits:
cnt += 1
return cnt
splits = [x.strip() for x in answer.split()]
if count(splits, choices) == 1:
for ch in choices:
if 'A' in splits and len(splits) > 3:
double_log(
f'A might be a quantifier in the string: {answer}. ', fout)
break
if ch in splits:
return ch
tups = [('', '.'), ('', ','), ('', ':'), ('', ')'), ('', ').'), ('(', ')'),
('(', ').'), (':', ''), (':', ','), (':', '.'), (':', ')'),
(':', ').')]
for tup in tups:
if count(splits, choices, prefix=tup[0], suffix=tup[1]) == 1:
for ch in choices:
if tup[0] + ch + tup[1] in splits:
return ch
return False
def can_infer_text(answer, choices):
answer = answer.lower()
assert isinstance(choices, dict)
for k in choices:
assert k in 'ABCD'
choices[k] = str(choices[k]).lower()
cands = []
for k in choices:
if choices[k] in answer:
cands.append(k)
if len(cands) == 1:
return cands[0]
return False
def can_infer(answer, choices):
copt = can_infer_option(answer)
return copt if copt else can_infer_text(answer, choices)
def prefetch_answer(item):
choices = build_choices(item)
return can_infer(item['prediction'], choices)
# Extract answer from a single record
def extract_answer_from_item(model, item):
# It will return: (pred, raw, llm_time)
options = extract_options(item)
option_str = build_option_str(options)
prompt = build_prompt(item['question'], option_str, item['prediction'])
retry = 3
choices = build_choices(item)
ret = can_infer(item['prediction'], choices)
if ret:
return ret, item['prediction']
while retry:
ans = model.generate([prompt])[0]
if 'Failed to obtain answer via API' in ans:
msg = 'GPT API failed to answer. '
double_log(msg, fout)
retry -= 1
else:
ret = can_infer(ans, choices)
if ret:
return ret, ans
else:
double_log(
f'GPT output includes 0 / >1 letter in "ABCD": {ans}',
fout)
retry -= 1
if retry == 0:
num_options = sum([ch in item for ch in 'ABCD'])
if num_options >= 2:
chars = string.ascii_uppercase[:num_options]
chars = chars + 'E'
num_options += 1
tmp = rd.randint(0, num_options - 1)
return chars[
tmp], 'Failed to predict, thus randomly generate one. '
# Extract answer from multiple rolling records
def eval_sub_data(model, sub_data, answer_map):
lt = len(sub_data)
GT, PRED = [], []
for i in range(lt):
item = sub_data.iloc[i]
idx = item['index']
GT.append(answer_map[idx])
PRED.append(prefetch_answer(item))
if PRED[-1] and (GT[-1] != PRED[-1]):
return 0
for i in range(lt):
if PRED[i]:
continue
else:
ret, _ = extract_answer_from_item(model, sub_data.iloc[i])
PRED[i] = ret
if PRED[i] != GT[i]:
return 0
return 1
# Evaluate Results
def eval_result(eval_file, eval_method, meta_file):
rd.seed(2680)
assert eval_method == 'openai'
# Set a large retry number to avoid failure
model = OpenAI('gpt-3.5-turbo-0613', retry=99)
double_log(f'Evaluating {eval_file}', fout)
result_file = eval_file.replace('.xlsx', f'_{eval_method}_result.pkl')
result = {}
if osp.exists(result_file):
result = load(result_file)
data = load(eval_file)
data = data.sort_values(by='index')
data['prediction'] = [str(x) for x in data['prediction']]
for k in data.keys():
data[k.lower() if k not in 'ABCD' else k] = data.pop(k)
meta = load(meta_file)
data_main = data[data['index'] < int(1e6)]
cate_map = {i: c for i, c in zip(meta['index'], meta['category'])}
l2_cate_map = {i: c for i, c in zip(meta['index'], meta['l2-category'])}
split_map = {i: c for i, c in zip(meta['index'], meta['split'])}
answer_map = {i: c for i, c in zip(meta['index'], meta['answer'])}
lt = len(data_main)
hit, tot = 0, 0
for i in tqdm(range(lt)):
# Dealing with the normal part
item_main = data_main.iloc[i]
idx = item_main['index']
if idx in result:
correct = result[idx]
assert correct in [0, 1]
hit += correct
tot += 1
continue
sub_data = data[data['index'] % int(1e6) == idx]
ret = eval_sub_data(model, sub_data, answer_map)
result[idx] = ret
hit += ret
tot += 1
dump(result, result_file)
if (i + 1) % 10 == 0:
double_log((f'Evaluating {eval_file}: {i + 1}/{lt}, '
f'Acc: {hit / tot * 100: .2f}%. '), fout)
dump(data_main, 'tmp.xlsx')
data_main = load('tmp.xlsx')
res = load(result_file)
indices = data_main['index']
data_main['hit'] = [res[i] for i in indices]
data_main['split'] = [split_map[i] for i in indices]
main_idx = data_main['index']
data_main['category'] = [cate_map[i] for i in main_idx]
data_main['l2-category'] = [l2_cate_map[i] for i in main_idx]
# load split
dump(data_main, eval_file.replace('.xlsx', f'_{eval_method}_result.xlsx'))
data_main = load(eval_file.replace('.xlsx', f'_{eval_method}_result.xlsx'))
overall = report_acc(data_main, None)
dump(overall, eval_file.replace('.xlsx', '_overall.csv'))
double_log(overall)
l2 = report_acc(data_main, 'l2-category')
dump(l2, eval_file.replace('.xlsx', '_l2.csv'))
double_log(l2)
leaf = report_acc(data_main, 'category')
dump(leaf, eval_file.replace('.xlsx', '_leaf.csv'))
double_log(leaf)
if fout is not None:
fout.close()
return overall, l2, leaf
def parse_args():
parser = argparse.ArgumentParser(
description='Evaluate Inference Results of MMBench-DEV SPLIT. ')
parser.add_argument('result',
type=str,
help='The path to your inference result. ')
parser.add_argument('--meta',
type=str,
default='data/mmbench_dev_20230712.tsv',
help=('The path to your meta file (dev). '
'Downloaded from MMBench website. '))
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
log_pth = args.result.replace('.xlsx', '_openai_eval.log')
fout = open(log_pth, 'a')
acc, l2, leaf = eval_result(args.result, 'openai', args.meta)
|