File size: 10,337 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from typing import Dict, List, Optional, Union

import torch

from opencompass.models.base import BaseModel
from opencompass.models.base_api import APITemplateParser
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList

PromptType = Union[PromptList, str]


class Llama2(BaseModel):
    """LLaMA-2 model wrapper
    https://github.com/facebookresearch/llama/tree/main.

    Args:
        path (str): path to the model directory
        max_seq_len (int): max sequence length
        max_batch_size (int): max batch size
        tokenizer_only (bool): whether to load tokenizer only
        tokenizer_path (str): path to the tokenizer directory
        meta_template (dict): meta template for the model
    """

    def __init__(
        self,
        path: str,
        max_seq_len: int = 2048,
        max_batch_size: int = 16,
        tokenizer_only: bool = False,
        tokenizer_path: Optional[str] = None,
        meta_template: Optional[Dict] = None,
    ):  # noqa
        if tokenizer_only:
            self._load_tokenizer(tokenizer_path=tokenizer_path)
        else:
            self._load_model(path=path,
                             max_seq_len=max_seq_len,
                             max_batch_size=max_batch_size,
                             tokenizer_path=tokenizer_path)
        self.max_seq_len = max_seq_len
        self.template_parser = APITemplateParser(meta_template)
        self.logger = get_logger()

    def _load_model(self,
                    path: str,
                    max_seq_len: int,
                    max_batch_size: int,
                    tokenizer_path: Optional[str] = None):
        from llama import Llama
        self.generator = Llama.build(path, tokenizer_path, max_seq_len,
                                     max_batch_size)
        self.tokenizer = self.generator.tokenizer
        self.model = self.generator.model

    def _load_tokenizer(self, tokenizer_path: str):
        from llama import Tokenizer
        self.tokenizer = Tokenizer(tokenizer_path)

    def generate(self, inputs: List[str], max_out_len: int) -> List[str]:
        prompt_tokens = []
        for input in inputs:
            tokens = self.tokenizer.encode(input, True, False)
            num_token = min(self.model.params.max_seq_len, len(tokens))
            prompt_tokens.append(tokens[-num_token:])
        generation_tokens, _ = self.generator.generate(
            prompt_tokens=prompt_tokens,
            max_gen_len=max_out_len,
            temperature=0,
        )
        results = [self.tokenizer.decode(t) for t in generation_tokens]
        return results

    def get_ppl(self,
                inputs: List[str],
                mask_length: Optional[List[int]] = None) -> List[float]:
        assert mask_length is None, 'mask_length is not supported'
        bsz = len(inputs)
        params = self.model.params
        assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
        # tokenize
        prompt_tokens = [self.tokenizer.encode(x, True, False) for x in inputs]
        max_prompt_size = max([len(t) for t in prompt_tokens])
        total_len = min(params.max_seq_len, max_prompt_size)
        tokens = torch.zeros((bsz, total_len)).cuda().long()
        for k, t in enumerate(prompt_tokens):
            num_token = min(total_len, len(t))
            tokens[k, :num_token] = torch.tensor(t[-num_token:]).long()
        # forward
        outputs = self.model.forward(tokens, 0)
        # compute ppl
        shift_logits = outputs[..., :-1, :].contiguous().float()
        shift_labels = tokens[..., 1:].contiguous()
        shift_logits = shift_logits.view(-1, shift_logits.size(-1))
        shift_labels = shift_labels.view(-1)
        loss_fct = torch.nn.CrossEntropyLoss(reduction='none', ignore_index=0)
        loss = loss_fct(shift_logits, shift_labels).view(bsz, -1)
        lens = (tokens != 0).sum(-1).cpu().numpy()
        ce_loss = loss.sum(-1).cpu().detach().numpy() / lens
        return ce_loss

    def get_loglikelihood(
            self,
            inputs: List[str],
            conts: List[str],
            mask_length: Optional[List[int]] = None) -> List[float]:
        assert mask_length is None, 'mask_length is not supported'
        bsz = len(inputs)
        params = self.model.params
        assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
        # tokenize
        input_tokens = [self.tokenizer.encode(x, True, False) for x in inputs]
        max_prompt_size = max([len(t) for t in input_tokens])
        total_len = min(params.max_seq_len, max_prompt_size)
        tokens = torch.zeros((bsz, total_len)).cuda().long()
        num_token_list = []
        cont_tokens = []
        for k, t in enumerate(input_tokens):
            num_token = min(total_len, len(t))
            num_token_list.append(num_token - 1)
            tokens[k, :num_token] = torch.tensor(t[-num_token:]).long()
            context_ids = self.tokenizer.encode(
                inputs[k].replace(conts[k], ''), True, False)
            cont_tokens.append(tokens[k, len(context_ids):num_token])
        # forward
        outputs = self.model.forward(tokens, 0)[:, :-1, :]
        outputs = torch.nn.functional.log_softmax(outputs, dim=-1)
        loglikelihood_sum = torch.zeros(bsz).cuda()
        for idx in range(bsz):
            logits = outputs[
                idx, num_token_list[idx] -
                len(cont_tokens[idx]):num_token_list[idx], :].unsqueeze(0)
            loglikelihood_sum[idx] = torch.gather(
                logits, 2, cont_tokens[idx].unsqueeze(0).unsqueeze(-1)).sum()
        loglikelihood_sum = loglikelihood_sum.cpu().detach().numpy()
        return loglikelihood_sum

    def get_token_len(self, prompt: str) -> int:
        return len(self.tokenizer.encode(prompt, True, True))


class Llama2Chat(BaseModel):
    """LLaMA-2 chat model wrapper
    https://github.com/facebookresearch/llama/tree/main.

    Args:
        path (str): path to the model directory
        max_seq_len (int): max sequence length
        max_batch_size (int): max batch size
        tokenizer_only (bool): whether to load tokenizer only
        tokenizer_path (str): path to the tokenizer directory
        meta_template (dict): meta template for the model
        force_bf16 (bool): whether to force set model to `bfloat16`
    """

    def __init__(
        self,
        path: str,
        max_seq_len: int = 2048,
        max_batch_size: int = 16,
        tokenizer_only: bool = False,
        tokenizer_path: Optional[str] = None,
        meta_template: Optional[Dict] = None,
        force_bf16: bool = False,
    ):  # noqa
        if tokenizer_only:
            self._load_tokenizer(tokenizer_path=tokenizer_path)
        else:
            self._load_model(path=path,
                             max_seq_len=max_seq_len,
                             max_batch_size=max_batch_size,
                             tokenizer_path=tokenizer_path,
                             force_bf16=force_bf16)
        self.max_seq_len = max_seq_len
        self.template_parser = APITemplateParser(meta_template)
        self.logger = get_logger()

    def _load_model(self,
                    path: str,
                    max_seq_len: int,
                    max_batch_size: int,
                    tokenizer_path: Optional[str] = None,
                    force_bf16=False):
        from llama import Llama
        self.generator = Llama.build(path, tokenizer_path, max_seq_len,
                                     max_batch_size)
        self.tokenizer = self.generator.tokenizer
        self.model = self.generator.model
        if force_bf16:
            # force set model to `bfloat16` to fix
            # the exception of 'RuntimeError: probability tensor
            # contains either `inf`, `nan` or element < 0',
            # encountered during the inference of llama2-7b
            self.model = self.model.bfloat16()

    def _load_tokenizer(self, tokenizer_path: str):
        from llama import Tokenizer
        self.tokenizer = Tokenizer(tokenizer_path)

    def generate(self,
                 inputs: List[str or PromptList],
                 max_out_len: int = 512,
                 temperature: float = 0.6) -> str:
        """Generate response from input prompt.

        Args:
            inputs (list): input prompt
            max_out_len (int): max output length
            temperature (float): temperature for sampling
        """
        dialogs = []
        for input in inputs:
            assert isinstance(input, (str, PromptList))
            if isinstance(input, str):
                dialog = [{'role': 'user', 'content': input}]
            else:
                dialog = []
                for item in input:
                    msg = {'content': item['prompt']}
                    if item['role'].upper() == 'HUMAN':
                        msg['role'] = 'user'
                    elif item['role'].upper() == 'BOT':
                        msg['role'] = 'assistant'
                    elif item['role'].upper() == 'SYSTEM':
                        msg['role'] = 'system'
                    else:
                        raise ValueError(f'Unknown role: {item["role"]}')
                    dialog.append(msg)
            dialogs.append(dialog)

        try:
            results = self.generator.chat_completion(
                dialogs,  # type: ignore
                max_gen_len=max_out_len,
                temperature=temperature,
            )
            return [r['generation']['content'] for r in results]
        except AssertionError:
            self.logger.warning('Batched data max token limit exceeded, '
                                'try to run one by one...')

        results = []
        for dialog in dialogs:
            try:
                result = self.generator.chat_completion(
                    [dialog],  # type: ignore
                    max_gen_len=max_out_len,
                    temperature=temperature,
                )[0]
                results.append(result['generation']['content'])
            except AssertionError:
                results.append('')
        return results

    def get_token_len(self, prompt: str) -> int:
        return len(self.tokenizer.encode(prompt, bos=True, eos=True)) + 100