File size: 8,576 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import argparse
import os.path as osp
import random
import time
from typing import Any
from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist
from opencompass.registry import (ICL_INFERENCERS, ICL_PROMPT_TEMPLATES,
ICL_RETRIEVERS, TASKS)
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, build_model_from_cfg,
get_infer_output_path, get_logger,
task_abbr_from_cfg)
@TASKS.register_module(force=(__name__ == '__main__')) # A hack for script run
class OpenICLAttackTask(BaseTask):
"""OpenICL Inference Task.
This task is used to run the inference process.
"""
name_prefix = 'OpenICLAttack'
log_subdir = 'logs/attack'
output_subdir = 'attack'
def __init__(self, cfg: ConfigDict):
super().__init__(cfg)
run_cfg = self.model_cfgs[0].get('run_cfg', {})
self.num_gpus = run_cfg.get('num_gpus', 0)
self.num_procs = run_cfg.get('num_procs', 1)
self.logger = get_logger()
def get_command(self, cfg_path, template):
"""Get the command template for the task.
Args:
cfg_path (str): The path to the config file of the task.
template (str): The template which have '{task_cmd}' to format
the command.
"""
script_path = __file__
if self.num_gpus > 0:
port = random.randint(12000, 32000)
command = (f'torchrun --master_port={port} '
f'--nproc_per_node {self.num_procs} '
f'{script_path} {cfg_path}')
else:
command = f'python {script_path} {cfg_path}'
return template.format(task_cmd=command)
def prompt_selection(self, inferencer, prompts):
prompt_dict = {}
for prompt in prompts:
acc = inferencer.predict(prompt)
prompt_dict[prompt] = acc
self.logger.info('{:.2f}, {}\n'.format(acc * 100, prompt))
sorted_prompts = sorted(prompt_dict.items(),
key=lambda x: x[1],
reverse=True)
return sorted_prompts
def run(self):
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}')
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
self.max_out_len = model_cfg.get('max_out_len', None)
self.batch_size = model_cfg.get('batch_size', None)
self.model = build_model_from_cfg(model_cfg)
for dataset_cfg in dataset_cfgs:
self.model_cfg = model_cfg
self.dataset_cfg = dataset_cfg
self.infer_cfg = self.dataset_cfg['infer_cfg']
self.dataset = build_dataset_from_cfg(self.dataset_cfg)
self.sub_cfg = {
'models': [self.model_cfg],
'datasets': [[self.dataset_cfg]],
}
out_path = get_infer_output_path(
self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'attack'))
if osp.exists(out_path):
continue
self._inference()
def _inference(self):
self.logger.info(
f'Start inferencing {task_abbr_from_cfg(self.sub_cfg)}')
assert hasattr(self.infer_cfg, 'ice_template') or hasattr(self.infer_cfg, 'prompt_template'), \
'Both ice_template and prompt_template cannot be None simultaneously.' # noqa: E501
ice_template = None
if hasattr(self.infer_cfg, 'ice_template'):
ice_template = ICL_PROMPT_TEMPLATES.build(
self.infer_cfg['ice_template'])
prompt_template = None
if hasattr(self.infer_cfg, 'prompt_template'):
prompt_template = ICL_PROMPT_TEMPLATES.build(
self.infer_cfg['prompt_template'])
retriever_cfg = self.infer_cfg['retriever'].copy()
retriever_cfg['dataset'] = self.dataset
retriever = ICL_RETRIEVERS.build(retriever_cfg)
# set inferencer's default value according to model's config'
inferencer_cfg = self.infer_cfg['inferencer']
inferencer_cfg['model'] = self.model
self._set_default_value(inferencer_cfg, 'max_out_len',
self.max_out_len)
self._set_default_value(inferencer_cfg, 'batch_size', self.batch_size)
inferencer_cfg['max_seq_len'] = self.model_cfg['max_seq_len']
inferencer_cfg['dataset_cfg'] = self.dataset_cfg
inferencer = ICL_INFERENCERS.build(inferencer_cfg)
out_path = get_infer_output_path(self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'attack'))
out_dir, out_file = osp.split(out_path)
mkdir_or_exist(out_dir)
from config import LABEL_SET
from prompt_attack.attack import create_attack
from prompt_attack.goal_function import PromptGoalFunction
inferencer.retriever = retriever
inferencer.prompt_template = prompt_template
inferencer.ice_template = ice_template
inferencer.output_json_filepath = out_dir
inferencer.output_json_filename = out_file
goal_function = PromptGoalFunction(
inference=inferencer,
query_budget=self.cfg['attack'].query_budget,
logger=self.logger,
model_wrapper=None,
verbose='True')
if self.cfg['attack']['dataset'] not in LABEL_SET:
# set default
self.cfg['attack']['dataset'] = 'mmlu'
attack = create_attack(self.cfg['attack'], goal_function)
prompts = self.infer_cfg['inferencer']['original_prompt_list']
sorted_prompts = self.prompt_selection(inferencer, prompts)
if True:
# if args.prompt_selection:
for prompt, acc in sorted_prompts:
self.logger.info('Prompt: {}, acc: {:.2f}%\n'.format(
prompt, acc * 100))
with open(out_dir + 'attacklog.txt', 'a+') as f:
f.write('Prompt: {}, acc: {:.2f}%\n'.format(
prompt, acc * 100))
for init_prompt, init_acc in sorted_prompts[:self.cfg['attack'].
prompt_topk]:
if init_acc > 0:
init_acc, attacked_prompt, attacked_acc, dropped_acc = attack.attack( # noqa
init_prompt)
self.logger.info('Original prompt: {}'.format(init_prompt))
self.logger.info('Attacked prompt: {}'.format(
attacked_prompt.encode('utf-8')))
self.logger.info(
'Original acc: {:.2f}%, attacked acc: {:.2f}%, dropped acc: {:.2f}%' # noqa
.format(init_acc * 100, attacked_acc * 100,
dropped_acc * 100))
with open(out_dir + 'attacklog.txt', 'a+') as f:
f.write('Original prompt: {}\n'.format(init_prompt))
f.write('Attacked prompt: {}\n'.format(
attacked_prompt.encode('utf-8')))
f.write(
'Original acc: {:.2f}%, attacked acc: {:.2f}%, dropped acc: {:.2f}%\n\n' # noqa
.format(init_acc * 100, attacked_acc * 100,
dropped_acc * 100))
else:
with open(out_dir + 'attacklog.txt', 'a+') as f:
f.write('Init acc is 0, skip this prompt\n')
f.write('Original prompt: {}\n'.format(init_prompt))
f.write('Original acc: {:.2f}% \n\n'.format(init_acc *
100))
def _set_default_value(self, cfg: ConfigDict, key: str, value: Any):
if key not in cfg:
assert value, (f'{key} must be specified!')
cfg[key] = value
def parse_args():
parser = argparse.ArgumentParser(description='Model Inferencer')
parser.add_argument('config', help='Config file path')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cfg = Config.fromfile(args.config)
start_time = time.time()
inferencer = OpenICLAttackTask(cfg)
inferencer.run()
end_time = time.time()
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')
|