File size: 8,576 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
import os.path as osp
import random
import time
from typing import Any

from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist

from opencompass.registry import (ICL_INFERENCERS, ICL_PROMPT_TEMPLATES,
                                  ICL_RETRIEVERS, TASKS)
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, build_model_from_cfg,
                               get_infer_output_path, get_logger,
                               task_abbr_from_cfg)


@TASKS.register_module(force=(__name__ == '__main__'))  # A hack for script run
class OpenICLAttackTask(BaseTask):
    """OpenICL Inference Task.

    This task is used to run the inference process.
    """

    name_prefix = 'OpenICLAttack'
    log_subdir = 'logs/attack'
    output_subdir = 'attack'

    def __init__(self, cfg: ConfigDict):
        super().__init__(cfg)
        run_cfg = self.model_cfgs[0].get('run_cfg', {})
        self.num_gpus = run_cfg.get('num_gpus', 0)
        self.num_procs = run_cfg.get('num_procs', 1)
        self.logger = get_logger()

    def get_command(self, cfg_path, template):
        """Get the command template for the task.

        Args:
            cfg_path (str): The path to the config file of the task.
            template (str): The template which have '{task_cmd}' to format
                the command.
        """
        script_path = __file__
        if self.num_gpus > 0:
            port = random.randint(12000, 32000)
            command = (f'torchrun --master_port={port} '
                       f'--nproc_per_node {self.num_procs} '
                       f'{script_path} {cfg_path}')
        else:
            command = f'python {script_path} {cfg_path}'

        return template.format(task_cmd=command)

    def prompt_selection(self, inferencer, prompts):
        prompt_dict = {}

        for prompt in prompts:
            acc = inferencer.predict(prompt)
            prompt_dict[prompt] = acc
            self.logger.info('{:.2f}, {}\n'.format(acc * 100, prompt))

        sorted_prompts = sorted(prompt_dict.items(),
                                key=lambda x: x[1],
                                reverse=True)
        return sorted_prompts

    def run(self):
        self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}')
        for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
            self.max_out_len = model_cfg.get('max_out_len', None)
            self.batch_size = model_cfg.get('batch_size', None)
            self.model = build_model_from_cfg(model_cfg)

            for dataset_cfg in dataset_cfgs:
                self.model_cfg = model_cfg
                self.dataset_cfg = dataset_cfg
                self.infer_cfg = self.dataset_cfg['infer_cfg']
                self.dataset = build_dataset_from_cfg(self.dataset_cfg)
                self.sub_cfg = {
                    'models': [self.model_cfg],
                    'datasets': [[self.dataset_cfg]],
                }
                out_path = get_infer_output_path(
                    self.model_cfg, self.dataset_cfg,
                    osp.join(self.work_dir, 'attack'))
                if osp.exists(out_path):
                    continue
                self._inference()

    def _inference(self):
        self.logger.info(
            f'Start inferencing {task_abbr_from_cfg(self.sub_cfg)}')

        assert hasattr(self.infer_cfg, 'ice_template') or hasattr(self.infer_cfg, 'prompt_template'), \
            'Both ice_template and prompt_template cannot be None simultaneously.'  # noqa: E501
        ice_template = None
        if hasattr(self.infer_cfg, 'ice_template'):
            ice_template = ICL_PROMPT_TEMPLATES.build(
                self.infer_cfg['ice_template'])

        prompt_template = None
        if hasattr(self.infer_cfg, 'prompt_template'):
            prompt_template = ICL_PROMPT_TEMPLATES.build(
                self.infer_cfg['prompt_template'])

        retriever_cfg = self.infer_cfg['retriever'].copy()
        retriever_cfg['dataset'] = self.dataset
        retriever = ICL_RETRIEVERS.build(retriever_cfg)

        # set inferencer's default value according to model's config'
        inferencer_cfg = self.infer_cfg['inferencer']
        inferencer_cfg['model'] = self.model
        self._set_default_value(inferencer_cfg, 'max_out_len',
                                self.max_out_len)
        self._set_default_value(inferencer_cfg, 'batch_size', self.batch_size)
        inferencer_cfg['max_seq_len'] = self.model_cfg['max_seq_len']
        inferencer_cfg['dataset_cfg'] = self.dataset_cfg
        inferencer = ICL_INFERENCERS.build(inferencer_cfg)

        out_path = get_infer_output_path(self.model_cfg, self.dataset_cfg,
                                         osp.join(self.work_dir, 'attack'))
        out_dir, out_file = osp.split(out_path)
        mkdir_or_exist(out_dir)

        from config import LABEL_SET
        from prompt_attack.attack import create_attack
        from prompt_attack.goal_function import PromptGoalFunction

        inferencer.retriever = retriever
        inferencer.prompt_template = prompt_template
        inferencer.ice_template = ice_template
        inferencer.output_json_filepath = out_dir
        inferencer.output_json_filename = out_file
        goal_function = PromptGoalFunction(
            inference=inferencer,
            query_budget=self.cfg['attack'].query_budget,
            logger=self.logger,
            model_wrapper=None,
            verbose='True')
        if self.cfg['attack']['dataset'] not in LABEL_SET:
            # set default
            self.cfg['attack']['dataset'] = 'mmlu'
        attack = create_attack(self.cfg['attack'], goal_function)

        prompts = self.infer_cfg['inferencer']['original_prompt_list']
        sorted_prompts = self.prompt_selection(inferencer, prompts)
        if True:
            # if args.prompt_selection:
            for prompt, acc in sorted_prompts:
                self.logger.info('Prompt: {}, acc: {:.2f}%\n'.format(
                    prompt, acc * 100))
                with open(out_dir + 'attacklog.txt', 'a+') as f:
                    f.write('Prompt: {}, acc: {:.2f}%\n'.format(
                        prompt, acc * 100))

        for init_prompt, init_acc in sorted_prompts[:self.cfg['attack'].
                                                    prompt_topk]:
            if init_acc > 0:
                init_acc, attacked_prompt, attacked_acc, dropped_acc = attack.attack(  # noqa
                    init_prompt)
                self.logger.info('Original prompt: {}'.format(init_prompt))
                self.logger.info('Attacked prompt: {}'.format(
                    attacked_prompt.encode('utf-8')))
                self.logger.info(
                    'Original acc: {:.2f}%, attacked acc: {:.2f}%, dropped acc: {:.2f}%'  # noqa
                    .format(init_acc * 100, attacked_acc * 100,
                            dropped_acc * 100))
                with open(out_dir + 'attacklog.txt', 'a+') as f:
                    f.write('Original prompt: {}\n'.format(init_prompt))
                    f.write('Attacked prompt: {}\n'.format(
                        attacked_prompt.encode('utf-8')))
                    f.write(
                        'Original acc: {:.2f}%, attacked acc: {:.2f}%, dropped acc: {:.2f}%\n\n'  # noqa
                        .format(init_acc * 100, attacked_acc * 100,
                                dropped_acc * 100))
            else:
                with open(out_dir + 'attacklog.txt', 'a+') as f:
                    f.write('Init acc is 0, skip this prompt\n')
                    f.write('Original prompt: {}\n'.format(init_prompt))
                    f.write('Original acc: {:.2f}% \n\n'.format(init_acc *
                                                                100))

    def _set_default_value(self, cfg: ConfigDict, key: str, value: Any):
        if key not in cfg:
            assert value, (f'{key} must be specified!')
            cfg[key] = value


def parse_args():
    parser = argparse.ArgumentParser(description='Model Inferencer')
    parser.add_argument('config', help='Config file path')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    cfg = Config.fromfile(args.config)
    start_time = time.time()
    inferencer = OpenICLAttackTask(cfg)
    inferencer.run()
    end_time = time.time()
    get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')