File size: 1,419 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
# Use FixKRetriever to avoid hang caused by the Huggingface
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import commonsenseqaDataset
commonsenseqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D', 'E'],
output_column='answerKey',
test_split='validation')
_ice_template = dict(
type=PromptTemplate,
template={
ans: dict(
begin='</E>',
round=[
dict(role="HUMAN", prompt="Question: {question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nE. {E}\nAnswer: "),
dict(role="BOT", prompt=f"{ans}"),
])
for ans in ['A', 'B', 'C', 'D', 'E']
},
ice_token='</E>')
commonsenseqa_infer_cfg = dict(
ice_template=_ice_template,
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4, 5, 6, 7]),
inferencer=dict(type=PPLInferencer))
commonsenseqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
commonsenseqa_datasets = [
dict(
abbr='commonsense_qa',
type=commonsenseqaDataset,
path='./data/commonsenseqa',
reader_cfg=commonsenseqa_reader_cfg,
infer_cfg=commonsenseqa_infer_cfg,
eval_cfg=commonsenseqa_eval_cfg)
]
|