File size: 1,622 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from copy import deepcopy
from mmengine.config import read_base
with read_base():
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.agieval.agieval_gen_64afd3 import agieval_datasets
from .datasets.bbh.bbh_gen_5b92b0 import bbh_datasets
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
from .datasets.math.math_evaluatorv2_gen_265cce import math_datasets
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
from .datasets.mbpp.sanitized_mbpp_gen_1e1056 import sanitized_mbpp_datasets
from .models.hf_internlm.hf_internlm2_chat_7b import models as hf_internlm2_chat_7b_model
from .models.hf_internlm.hf_internlm2_chat_20b import models as hf_internlm2_chat_20b_model
from .summarizers.internlm2_keyset import summarizer
work_dir = './outputs/internlm2-chat-keyset/'
_origin_datasets = sum([v for k, v in locals().items() if k.endswith("_datasets")], [])
_origin_models = sum([v for k, v in locals().items() if k.endswith("_model")], [])
_vanilla_datasets = [deepcopy(d) for d in _origin_datasets]
_vanilla_models = []
for m in _origin_models:
m = deepcopy(m)
if 'meta_template' in m and 'round' in m['meta_template']:
round = m['meta_template']['round']
if any(r['role'] == 'SYSTEM' for r in round):
new_round = [r for r in round if r['role'] != 'SYSTEM']
print(f'WARNING: remove SYSTEM round in meta_template for {m.get("abbr", None)}')
m['meta_template']['round'] = new_round
_vanilla_models.append(m)
datasets = _vanilla_datasets
models = _vanilla_models
|