File size: 1,667 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from opencompass.multimodal.models.visualglm import (VisualGLMBasePostProcessor, VisualGLMScienceQAPromptConstructor)

# dataloader settings
val_pipeline = [
    dict(type='mmpretrain.LoadImageFromFile'),
    dict(type='mmpretrain.ToPIL', to_rgb=True),
    dict(type='mmpretrain.torchvision/Resize',
         size=(224, 224),
         interpolation=3),
    dict(type='mmpretrain.torchvision/ToTensor'),
    dict(type='mmpretrain.torchvision/Normalize',
         mean=(0.48145466, 0.4578275, 0.40821073),
         std=(0.26862954, 0.26130258, 0.27577711)),
    dict(type='mmpretrain.PackInputs',
         algorithm_keys=[
             'question', 'gt_answer', 'choices', 'hint', 'lecture', 'solution', 'has_image'
         ])
]

dataset = dict(type='mmpretrain.ScienceQA',
               data_root='./data/scienceqa',
               split='val',
               split_file='pid_splits.json',
               ann_file='problems.json',
               image_only=True,
               data_prefix=dict(img_path='val'),
               pipeline=val_pipeline)

visualglm_scienceqa_dataloader = dict(batch_size=1,
                  num_workers=4,
                  dataset=dataset,
                  collate_fn=dict(type='pseudo_collate'),
                  sampler=dict(type='DefaultSampler', shuffle=False))

# model settings
visualglm_scienceqa_model = dict(
    type='visualglm',
    pretrained_path='/path/to/visualglm',  # or Huggingface repo id
    prompt_constructor=dict(type=VisualGLMScienceQAPromptConstructor),
    post_processor=dict(type=VisualGLMBasePostProcessor)
)

# evaluation settings
visualglm_scienceqa_evaluator = [dict(type='mmpretrain.ScienceQAMetric')]