File size: 23,748 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from mmengine.config import read_base
from opencompass.summarizers import CircularSummarizer

with read_base():
    from .groups.ceval import ceval_summary_groups

ceval_category_weights = {
    'computer_network': {'accuracy - clean': 11, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 6, 'accuracy - not labeled': 0},
    'operating_system': {'accuracy - clean': 14, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 5, 'accuracy - not labeled': 0},
    'computer_architecture': {'accuracy - clean': 7, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 12, 'accuracy - not labeled': 0},
    'college_programming': {'accuracy - clean': 22, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 14, 'accuracy - not labeled': 0},
    'college_physics': {'accuracy - clean': 6, 'accuracy - input contaminated': 4, 'accuracy - input-and-label contaminated': 9, 'accuracy - not labeled': 0},
    'college_chemistry': {'accuracy - clean': 21, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 2, 'accuracy - not labeled': 0},
    'advanced_mathematics': {'accuracy - clean': 19, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 0, 'accuracy - not labeled': 0},
    'probability_and_statistics': {'accuracy - clean': 18, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 0, 'accuracy - not labeled': 0},
    'discrete_mathematics': {'accuracy - clean': 14, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 1, 'accuracy - not labeled': 0},
    'electrical_engineer': {'accuracy - clean': 18, 'accuracy - input contaminated': 4, 'accuracy - input-and-label contaminated': 15, 'accuracy - not labeled': 0},
    'metrology_engineer': {'accuracy - clean': 8, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 14, 'accuracy - not labeled': 0},
    'high_school_mathematics': {'accuracy - clean': 18, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 0, 'accuracy - not labeled': 0},
    'high_school_physics': {'accuracy - clean': 12, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 5, 'accuracy - not labeled': 0},
    'high_school_chemistry': {'accuracy - clean': 16, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 3, 'accuracy - not labeled': 0},
    'high_school_biology': {'accuracy - clean': 9, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 10, 'accuracy - not labeled': 0},
    'middle_school_mathematics': {'accuracy - clean': 15, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 3, 'accuracy - not labeled': 0},
    'middle_school_biology': {'accuracy - clean': 10, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 11, 'accuracy - not labeled': 0},
    'middle_school_physics': {'accuracy - clean': 7, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 11, 'accuracy - not labeled': 0},
    'middle_school_chemistry': {'accuracy - clean': 12, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 8, 'accuracy - not labeled': 0},
    'veterinary_medicine': {'accuracy - clean': 13, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 10, 'accuracy - not labeled': 0},
    'college_economics': {'accuracy - clean': 19, 'accuracy - input contaminated': 4, 'accuracy - input-and-label contaminated': 32, 'accuracy - not labeled': 0},
    'business_administration': {'accuracy - clean': 13, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 18, 'accuracy - not labeled': 0},
    'marxism': {'accuracy - clean': 10, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 8, 'accuracy - not labeled': 0},
    'mao_zedong_thought': {'accuracy - clean': 6, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 18, 'accuracy - not labeled': 0},
    'education_science': {'accuracy - clean': 11, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 17, 'accuracy - not labeled': 0},
    'teacher_qualification': {'accuracy - clean': 18, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 23, 'accuracy - not labeled': 1},
    'high_school_politics': {'accuracy - clean': 14, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 3, 'accuracy - not labeled': 0},
    'high_school_geography': {'accuracy - clean': 11, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 8, 'accuracy - not labeled': 0},
    'middle_school_politics': {'accuracy - clean': 20, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 1, 'accuracy - not labeled': 0},
    'middle_school_geography': {'accuracy - clean': 3, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 8, 'accuracy - not labeled': 0},
    'modern_chinese_history': {'accuracy - clean': 8, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 15, 'accuracy - not labeled': 0},
    'ideological_and_moral_cultivation': {'accuracy - clean': 5, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 14, 'accuracy - not labeled': 0},
    'logic': {'accuracy - clean': 15, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 7, 'accuracy - not labeled': 0},
    'law': {'accuracy - clean': 15, 'accuracy - input contaminated': 3, 'accuracy - input-and-label contaminated': 6, 'accuracy - not labeled': 0},
    'chinese_language_and_literature': {'accuracy - clean': 13, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 9, 'accuracy - not labeled': 0},
    'art_studies': {'accuracy - clean': 14, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 19, 'accuracy - not labeled': 0},
    'professional_tour_guide': {'accuracy - clean': 10, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 17, 'accuracy - not labeled': 0},
    'legal_professional': {'accuracy - clean': 14, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 7, 'accuracy - not labeled': 0},
    'high_school_chinese': {'accuracy - clean': 12, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 4, 'accuracy - not labeled': 3},
    'high_school_history': {'accuracy - clean': 12, 'accuracy - input contaminated': 3, 'accuracy - input-and-label contaminated': 5, 'accuracy - not labeled': 0},
    'middle_school_history': {'accuracy - clean': 11, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 9, 'accuracy - not labeled': 1},
    'civil_servant': {'accuracy - clean': 19, 'accuracy - input contaminated': 5, 'accuracy - input-and-label contaminated': 17, 'accuracy - not labeled': 6},
    'sports_science': {'accuracy - clean': 8, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 9, 'accuracy - not labeled': 0},
    'plant_protection': {'accuracy - clean': 12, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 9, 'accuracy - not labeled': 0},
    'basic_medicine': {'accuracy - clean': 9, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 10, 'accuracy - not labeled': 0},
    'clinical_medicine': {'accuracy - clean': 14, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 7, 'accuracy - not labeled': 0},
    'urban_and_rural_planner': {'accuracy - clean': 28, 'accuracy - input contaminated': 3, 'accuracy - input-and-label contaminated': 15, 'accuracy - not labeled': 0},
    'accountant': {'accuracy - clean': 17, 'accuracy - input contaminated': 7, 'accuracy - input-and-label contaminated': 25, 'accuracy - not labeled': 0},
    'fire_engineer': {'accuracy - clean': 12, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 18, 'accuracy - not labeled': 0},
    'environmental_impact_assessment_engineer': {'accuracy - clean': 21, 'accuracy - input contaminated': 2, 'accuracy - input-and-label contaminated': 8, 'accuracy - not labeled': 0},
    'tax_accountant': {'accuracy - clean': 31, 'accuracy - input contaminated': 0, 'accuracy - input-and-label contaminated': 18, 'accuracy - not labeled': 0},
    'physician': {'accuracy - clean': 24, 'accuracy - input contaminated': 1, 'accuracy - input-and-label contaminated': 24, 'accuracy - not labeled': 0},
}

mmlu_category_weights = {
    "business_ethics": {"accuracy - clean": 44, "accuracy - input contaminated": 16, "accuracy - input-and-label contaminated": 38, "accuracy - not labeled": 1},
    "security_studies": {"accuracy - clean": 188, "accuracy - input contaminated": 9, "accuracy - input-and-label contaminated": 47, "accuracy - not labeled": 0},
    "high_school_us_history": {"accuracy - clean": 42, "accuracy - input contaminated": 0, "accuracy - input-and-label contaminated": 0, "accuracy - not labeled": 161},
    "moral_disputes": {"accuracy - clean": 105, "accuracy - input contaminated": 13, "accuracy - input-and-label contaminated": 168, "accuracy - not labeled": 59},
    "philosophy": {"accuracy - clean": 81, "accuracy - input contaminated": 11, "accuracy - input-and-label contaminated": 187, "accuracy - not labeled": 31},
    "public_relations": {"accuracy - clean": 75, "accuracy - input contaminated": 8, "accuracy - input-and-label contaminated": 26, "accuracy - not labeled": 0},
    "high_school_microeconomics": {"accuracy - clean": 82, "accuracy - input contaminated": 9, "accuracy - input-and-label contaminated": 146, "accuracy - not labeled": 0},
    "human_sexuality": {"accuracy - clean": 108, "accuracy - input contaminated": 3, "accuracy - input-and-label contaminated": 15, "accuracy - not labeled": 4},
    "professional_accounting": {"accuracy - clean": 88, "accuracy - input contaminated": 40, "accuracy - input-and-label contaminated": 152, "accuracy - not labeled": 1},
    "high_school_government_and_politics": {"accuracy - clean": 104, "accuracy - input contaminated": 6, "accuracy - input-and-label contaminated": 82, "accuracy - not labeled": 0},
    "sociology": {"accuracy - clean": 105, "accuracy - input contaminated": 4, "accuracy - input-and-label contaminated": 91, "accuracy - not labeled": 0},
    "conceptual_physics": {"accuracy - clean": 79, "accuracy - input contaminated": 8, "accuracy - input-and-label contaminated": 147, "accuracy - not labeled": 0},
    "human_aging": {"accuracy - clean": 208, "accuracy - input contaminated": 1, "accuracy - input-and-label contaminated": 13, "accuracy - not labeled": 0},
    "high_school_psychology": {"accuracy - clean": 108, "accuracy - input contaminated": 26, "accuracy - input-and-label contaminated": 162, "accuracy - not labeled": 248},
    "jurisprudence": {"accuracy - clean": 59, "accuracy - input contaminated": 5, "accuracy - input-and-label contaminated": 43, "accuracy - not labeled": 0},
    "moral_scenarios": {"accuracy - clean": 320, "accuracy - input contaminated": 0, "accuracy - input-and-label contaminated": 0, "accuracy - not labeled": 574},
    "college_medicine": {"accuracy - clean": 107, "accuracy - input contaminated": 16, "accuracy - input-and-label contaminated": 44, "accuracy - not labeled": 5},
    "high_school_world_history": {"accuracy - clean": 61, "accuracy - input contaminated": 2, "accuracy - input-and-label contaminated": 0, "accuracy - not labeled": 173},
    "virology": {"accuracy - clean": 104, "accuracy - input contaminated": 3, "accuracy - input-and-label contaminated": 58, "accuracy - not labeled": 0},
    "high_school_statistics": {"accuracy - clean": 96, "accuracy - input contaminated": 43, "accuracy - input-and-label contaminated": 76, "accuracy - not labeled": 0},
    "nutrition": {"accuracy - clean": 172, "accuracy - input contaminated": 11, "accuracy - input-and-label contaminated": 98, "accuracy - not labeled": 24},
    "abstract_algebra": {"accuracy - clean": 84, "accuracy - input contaminated": 8, "accuracy - input-and-label contaminated": 7, "accuracy - not labeled": 0},
    "high_school_geography": {"accuracy - clean": 91, "accuracy - input contaminated": 1, "accuracy - input-and-label contaminated": 105, "accuracy - not labeled": 0},
    "econometrics": {"accuracy - clean": 62, "accuracy - input contaminated": 13, "accuracy - input-and-label contaminated": 38, "accuracy - not labeled": 0},
    "marketing": {"accuracy - clean": 115, "accuracy - input contaminated": 15, "accuracy - input-and-label contaminated": 101, "accuracy - not labeled": 2},
    "high_school_chemistry": {"accuracy - clean": 108, "accuracy - input contaminated": 25, "accuracy - input-and-label contaminated": 69, "accuracy - not labeled": 0},
    "prehistory": {"accuracy - clean": 154, "accuracy - input contaminated": 5, "accuracy - input-and-label contaminated": 107, "accuracy - not labeled": 57},
    "college_physics": {"accuracy - clean": 25, "accuracy - input contaminated": 20, "accuracy - input-and-label contaminated": 57, "accuracy - not labeled": 0},
    "management": {"accuracy - clean": 35, "accuracy - input contaminated": 5, "accuracy - input-and-label contaminated": 62, "accuracy - not labeled": 0},
    "college_biology": {"accuracy - clean": 91, "accuracy - input contaminated": 12, "accuracy - input-and-label contaminated": 40, "accuracy - not labeled": 0},
    "high_school_biology": {"accuracy - clean": 128, "accuracy - input contaminated": 17, "accuracy - input-and-label contaminated": 135, "accuracy - not labeled": 29},
    "high_school_physics": {"accuracy - clean": 42, "accuracy - input contaminated": 28, "accuracy - input-and-label contaminated": 80, "accuracy - not labeled": 0},
    "logical_fallacies": {"accuracy - clean": 133, "accuracy - input contaminated": 5, "accuracy - input-and-label contaminated": 24, "accuracy - not labeled": 0},
    "medical_genetics": {"accuracy - clean": 49, "accuracy - input contaminated": 6, "accuracy - input-and-label contaminated": 43, "accuracy - not labeled": 1},
    "machine_learning": {"accuracy - clean": 71, "accuracy - input contaminated": 8, "accuracy - input-and-label contaminated": 32, "accuracy - not labeled": 0},
    "professional_law": {"accuracy - clean": 401, "accuracy - input contaminated": 8, "accuracy - input-and-label contaminated": 5, "accuracy - not labeled": 1119},
    "professional_psychology": {"accuracy - clean": 265, "accuracy - input contaminated": 9, "accuracy - input-and-label contaminated": 27, "accuracy - not labeled": 310},
    "global_facts": {"accuracy - clean": 89, "accuracy - input contaminated": 5, "accuracy - input-and-label contaminated": 5, "accuracy - not labeled": 0},
    "us_foreign_policy": {"accuracy - clean": 71, "accuracy - input contaminated": 3, "accuracy - input-and-label contaminated": 25, "accuracy - not labeled": 0},
    "international_law": {"accuracy - clean": 73, "accuracy - input contaminated": 1, "accuracy - input-and-label contaminated": 46, "accuracy - not labeled": 0},
    "clinical_knowledge": {"accuracy - clean": 172, "accuracy - input contaminated": 6, "accuracy - input-and-label contaminated": 86, "accuracy - not labeled": 0},
    "high_school_mathematics": {"accuracy - clean": 178, "accuracy - input contaminated": 59, "accuracy - input-and-label contaminated": 32, "accuracy - not labeled": 0},
    "high_school_computer_science": {"accuracy - clean": 62, "accuracy - input contaminated": 7, "accuracy - input-and-label contaminated": 28, "accuracy - not labeled": 2},
    "college_computer_science": {"accuracy - clean": 68, "accuracy - input contaminated": 15, "accuracy - input-and-label contaminated": 15, "accuracy - not labeled": 1},
    "electrical_engineering": {"accuracy - clean": 75, "accuracy - input contaminated": 8, "accuracy - input-and-label contaminated": 61, "accuracy - not labeled": 0},
    "college_mathematics": {"accuracy - clean": 61, "accuracy - input contaminated": 13, "accuracy - input-and-label contaminated": 26, "accuracy - not labeled": 0},
    "computer_security": {"accuracy - clean": 55, "accuracy - input contaminated": 8, "accuracy - input-and-label contaminated": 36, "accuracy - not labeled": 0},
    "high_school_macroeconomics": {"accuracy - clean": 102, "accuracy - input contaminated": 14, "accuracy - input-and-label contaminated": 173, "accuracy - not labeled": 100},
    "astronomy": {"accuracy - clean": 112, "accuracy - input contaminated": 4, "accuracy - input-and-label contaminated": 35, "accuracy - not labeled": 0},
    "college_chemistry": {"accuracy - clean": 46, "accuracy - input contaminated": 19, "accuracy - input-and-label contaminated": 34, "accuracy - not labeled": 0},
    "high_school_european_history": {"accuracy - clean": 41, "accuracy - input contaminated": 0, "accuracy - input-and-label contaminated": 0, "accuracy - not labeled": 123},
    "miscellaneous": {"accuracy - clean": 256, "accuracy - input contaminated": 9, "accuracy - input-and-label contaminated": 40, "accuracy - not labeled": 477},
    "formal_logic": {"accuracy - clean": 92, "accuracy - input contaminated": 12, "accuracy - input-and-label contaminated": 21, "accuracy - not labeled": 0},
    "elementary_mathematics": {"accuracy - clean": 155, "accuracy - input contaminated": 31, "accuracy - input-and-label contaminated": 103, "accuracy - not labeled": 88},
    "world_religions": {"accuracy - clean": 130, "accuracy - input contaminated": 4, "accuracy - input-and-label contaminated": 36, "accuracy - not labeled": 0},
    "professional_medicine": {"accuracy - clean": 191, "accuracy - input contaminated": 43, "accuracy - input-and-label contaminated": 1, "accuracy - not labeled": 36},
    "anatomy": {"accuracy - clean": 52, "accuracy - input contaminated": 6, "accuracy - input-and-label contaminated": 76, "accuracy - not labeled": 0},
}


ARC_weights = {'accuracy - clean': 836, 'accuracy - input contaminated': 53, 'accuracy - input-and-label contaminated': 283, 'accuracy - not labeled': 0}
hellaswag_weights = {'accuracy - clean': 5169, 'accuracy - input contaminated': 37, 'accuracy - input-and-label contaminated': 673, 'accuracy - not labeled': 4163}

ceval_stem = ['computer_network', 'operating_system', 'computer_architecture', 'college_programming', 'college_physics', 'college_chemistry', 'advanced_mathematics', 'probability_and_statistics', 'discrete_mathematics', 'electrical_engineer', 'metrology_engineer', 'high_school_mathematics', 'high_school_physics', 'high_school_chemistry', 'high_school_biology', 'middle_school_mathematics', 'middle_school_biology', 'middle_school_physics', 'middle_school_chemistry', 'veterinary_medicine']
ceval_social_science = ['college_economics', 'business_administration', 'marxism', 'mao_zedong_thought', 'education_science', 'teacher_qualification', 'high_school_politics', 'high_school_geography', 'middle_school_politics', 'middle_school_geography']
ceval_humanities = ['modern_chinese_history', 'ideological_and_moral_cultivation', 'logic', 'law', 'chinese_language_and_literature', 'art_studies', 'professional_tour_guide', 'legal_professional', 'high_school_chinese', 'high_school_history', 'middle_school_history']
ceval_other = ['civil_servant', 'sports_science', 'plant_protection', 'basic_medicine', 'clinical_medicine', 'urban_and_rural_planner', 'accountant', 'fire_engineer', 'environmental_impact_assessment_engineer', 'tax_accountant', 'physician']
ceval_hard = ['advanced_mathematics', 'discrete_mathematics', 'probability_and_statistics', 'college_chemistry', 'college_physics', 'high_school_mathematics', 'high_school_chemistry', 'high_school_physics']
ceval_all = ceval_stem + ceval_social_science + ceval_humanities + ceval_other

_mmlu_humanities = ['formal_logic', 'high_school_european_history', 'high_school_us_history', 'high_school_world_history', 'international_law', 'jurisprudence', 'logical_fallacies', 'moral_disputes', 'moral_scenarios', 'philosophy', 'prehistory', 'professional_law', 'world_religions']
_mmlu_stem = ['abstract_algebra', 'anatomy', 'astronomy', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_physics', 'computer_security', 'conceptual_physics', 'electrical_engineering', 'elementary_mathematics', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_mathematics', 'high_school_physics', 'high_school_statistics', 'machine_learning']
_mmlu_social_science = ['econometrics', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_microeconomics', 'high_school_psychology', 'human_sexuality', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy']
_mmlu_other = ['business_ethics', 'clinical_knowledge', 'college_medicine', 'global_facts', 'human_aging', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'nutrition', 'professional_accounting', 'professional_medicine', 'virology']
_mmlu_all = _mmlu_humanities + _mmlu_stem + _mmlu_social_science + _mmlu_other

ceval_name_and_subsets = [
    ('ceval', ceval_all),
    ('ceval-stem', ceval_stem),
    ('ceval-social-science', ceval_social_science),
    ('ceval-humanities', ceval_humanities),
    ('ceval-other', ceval_other),
    ('ceval-hard', ceval_hard)
]

mmlu_name_and_subsets = [
    ('mmlu', _mmlu_all),
    ('mmlu-humanities', _mmlu_humanities),
    ('mmlu-stem', _mmlu_stem),
    ('mmlu-social-science', _mmlu_social_science),
    ('mmlu-other', _mmlu_other)
]

summary_groups = []
for metric_name in ['accuracy - clean', 'accuracy - input contaminated', 'accuracy - input-and-label contaminated']:
    for dataset_abbr, subsets in ceval_name_and_subsets:
        weights = {f'ceval-{i}': ceval_category_weights[i][metric_name] for i in subsets}
        subsets = [[f'ceval-{i}', metric_name] for i in subsets]
        summary_groups.append(
            {
                'name': dataset_abbr,
                'subsets': subsets,
                'metric': metric_name,
                'weights': weights,
            }
        )
    
    for dataset_abbr, subsets in mmlu_name_and_subsets:
        weights = {f'lukaemon_mmlu_{i}': mmlu_category_weights[i][metric_name] for i in subsets}
        subsets = [[f'lukaemon_mmlu_{i}', metric_name] for i in subsets]
        summary_groups.append(
            {
                'name': dataset_abbr,
                'subsets': subsets,
                'metric': metric_name,
                'weights': weights,
            }
        )
    
    summary_groups.append(
        {
            'name': 'hellaswag',
            'subsets': [['hellaswag', metric_name]],
            'metric': metric_name,
            'weights': {'hellaswag': hellaswag_weights[metric_name]}
        }
    )

    summary_groups.append(
        {
            'name': 'ARC-c-test',
            'subsets': [['ARC-c-test', metric_name]],
            'metric': metric_name,
            'weights': {'ARC-c-test': ARC_weights[metric_name]}
        }
    )

summarizer = dict(
    type=CircularSummarizer,
    metric_types=['accuracy - clean', 'accuracy - input contaminated', 'accuracy - input-and-label contaminated'],
    dataset_abbrs = ['ceval', 'ceval-stem', 'ceval-social-science', 'ceval-humanities', 'ceval-other', 'ceval-hard', 'mmlu', 'mmlu-humanities', 'mmlu-stem', 'mmlu-social-science', 'mmlu-other', 'hellaswag', 'ARC-c-test'],
    summary_groups=summary_groups,
)