File size: 14,755 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# Needle In A Haystack Experiment Evaluation
## Introduction to the Needle In A Haystack Test
The Needle In A Haystack test, inspired by [NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/LLMNeedleHaystackTester.py), is a method to evaluate the long-text information extraction ability of Large Language Models (LLMs). It involves randomly inserting key information at various points in a long text to form a prompt for LLMs. This test assesses the fundamental ability of LLMs to understand long texts by extracting critical information from them.
## Dataset Introduction
The `Skywork/ChineseDomainModelingEval` dataset includes high-quality Chinese articles published between September and October 2023, covering multiple domains. These articles ensure a fair and challenging benchmark for testing.
## File Description
The dataset includes files specific to various domains:
- `zh_finance.jsonl` - Finance
- `zh_game.jsonl` - Gaming
- `zh_government.jsonl` - Government
- `zh_movie.jsonl` - Movies
- `zh_tech.jsonl` - Technology
- `zh_general.jsonl` - General
These files are used to assess the LLM's understanding of different specific domains.
### Evaluation Steps
1. Download the dataset from [Skywork/ChineseDomainModelingEval](https://huggingface.co/datasets/Skywork/ChineseDomainModelingEval/tree/main).
2. Place the downloaded files in `opencompass/data/CDME/`. The expected file structure in the `CDME` directory is as follows:
```
opencompass/
├── configs
├── docs
├── data
│ └── CDME
│ ├── processed
│ ├── README.md
│ ├── zh_finance.jsonl
│ ├── zh_game.jsonl
│ ├── zh_general.jsonl
│ ├── zh_government.jsonl
│ ├── zh_movie.jsonl
│ └── zh_tech.jsonl
├── LICENSE
├── opencompass
├── outputs
├── run.py
├── more...
```
### Environment Setup
```bash
conda create --name opencompass python=3.10 pytorch torchvision pytorch-cuda -c nvidia -c pytorch -y
conda activate opencompass
git clone https://github.com/open-compass/opencompass opencompass
cd opencompass
pip install -e .
```
### Configuring the Dataset
In the latest version, datasets are no longer generated by running scripts but dynamically defined and loaded through configuration files. Users need to specify dataset parameters in the configuration file according to their needs, offering greater flexibility and customization options.
#### Dataset Configuration Example
Here is an example of dataset configuration, showing how to define a dataset in the `configs/datasets/cdme/cdme8k.py` configuration file. This example demonstrates a Chinese dataset configuration with a length of 8000 tokens:
```python
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
dataset_dict = {
'abbr': f'CDME_Length{original_context_length}Depth{int(depth_percent)}',
'type': CDMEDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 200,
'guide': True,
'language': 'Chinese',
'needle': '\n小明最喜欢的实习的地点就是上海人工智能实验室。\n',
'retrieval_question': '小明最喜欢的实习地点是哪里?请按照“小明最喜欢的实习地点就是________。”的格式回答。',
'reader_cfg': cdme_reader_cfg,
'infer_cfg': cdme_infer_cfg,
'eval_cfg': cdme_eval_cfg
}
cdme_datasets.append(dataset_dict)
```
In this configuration, the main parameters include:
- `abbr`: Abbreviation of the dataset.
- `type`: Dataset type.
- `path`: Path to the dataset files.
- `length`: Context length in tokens.
- `depth`: Depth percentage of the document.
- `tokenizer_model`: Tokenizer model used.
- `file_list`: List of data source files.
- `num_repeats_per_file`: Number of repeats per file.
- `length_buffer`: Length buffer.
- `guide`: Whether it's a guided dataset.
- `language`: Language of the dataset.
- `needle`: Specific text to find in the dataset (the 'needle').
- `retrieval_question`: Question used to prompt the model for retrieval.
- `reader_cfg`, `infer_cfg`, `eval_cfg`: Configurations for reading, inference, and evaluation, respectively.
By defining these parameters in the configuration file, you can flexibly create datasets that suit your needs. Configuration files offer a highly customizable and scalable way to manage the generation and use of datasets.
### Multi-Needle Needle In A Haystack Test
The latest version introduces the multi-needle Needle In A Haystack test, allowing multiple different needles (text snippets) to be inserted into the same dataset. These needles are inserted in sequence according to a given depth parameter. Compared to the single-needle test, the multi-needle test provides a more complex data processing scenario.
#### Multi-Needle Dataset Configuration Example
Here is an example of configuring a multi-needle dataset, showing how to define a multi-needle dataset in the `configs/datasets/cdme/multi_needle/cdme8k_cot3_italy.py` configuration file. This example demonstrates a dataset configuration with three needles:
```python
# Basic dataset configuration
base_path = './data/CDME'
file_list = ['zh_finance.jsonl']
# Definition of Needles
needles = [
'\n意大利的佛罗伦萨有一家名为"La Giostra"的餐馆,是整个佛罗伦萨中排行第一的餐馆。\n',
'"La Giostra"餐馆的特色菜肴是松露奶酪通心粉。',
'松露奶酪通心粉是该家餐馆的有着意大利皇室烹饪血统的大厨Jack制作'
]
# Configuration parameters
retrieval_question = ("制作佛罗伦萨中排行第一的餐馆的特色菜肴的人叫什么?"
"请按照'制作佛罗伦萨中排行第一的餐馆的特色菜肴的人叫______。'的格式回答。")
answer = "制作佛罗伦萨中排行第一的餐馆的特色菜肴的人叫Jack"
keyword = "Jack"
diff = 25
# Dataset generation loop
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
dataset_dict = {
# Other configuration items...
'needles': needles,
'diff': diff,
'keyword': keyword,
# Other configuration items...
}
cdme_datasets.append(dataset_dict)
```
In this configuration, in addition to the standard parameters, the main new parameters include:
- `needles`: A list containing multiple strings, each representing a needle to be inserted.
- `diff`: Defines the depth increment for subsequent needles relative to the first needle.
- `keyword`: A keyword used for score correction during the evaluation process.
#### Change in Scoring Mechanism
In the source code of `opencompass/datasets/cdme/cdme_multi.py`, the scoring mechanism for multi-needle datasets differs. The following code segment has been added to adjust the scores based on the `keyword` in the predictions:
```python
if keyword in prediction:
print(f'{keyword} is in {prediction}')
score = 100
else:
print(f'{keyword} is not in {prediction}')
score = 0.2 * score
```
This code means that if the keyword is present in the prediction, it will be awarded a high score (e.g., 100). If not, the score will be significantly reduced (20% of the original score). This scoring mechanism places more emphasis on the accuracy of keywords, supplementing the traditional scoring methods.
### Evaluation
#### Evaluating with the `internlm` Model
For example, to evaluate using the `internlm` model, the following command can be used:
```bash
python run.py configs/eval_needleinahaystack.py --slurm -p partition_name -q auto --max-num-workers 32
```
This command initiates the evaluation process, where the model attempts to find the specified "needle" in the generated dataset. The parameters `-p partition_name -q auto` and `--max-num-workers 32` specify the Slurm queue and the maximum number of worker processes, respectively.
#### Large-Scale Text Evaluation with `LMDeploy`
When evaluating especially long texts (e.g., 200k tokens), conventional methods might lead to memory overload. In such cases, quantized models can be used for evaluation. This can be achieved using the `LMDeploy` tool ([LMDeploy](https://github.com/InternLM/lmdeploy)).
Detailed information about installing and configuring `LMDeploy` can be found on its GitHub page. Once installed, the `TurboMindModel` defined in the `configs/eval_needleinahaystack_turbomind.py` configuration file can be used for evaluation.
Below is an example configuration in the `configs/eval_needleinahaystack_turbomind.py` file:
```python
from opencompass.models.turbomind import TurboMindModel
from mmengine.config import read_base
with read_base():
from .datasets.cdme.cdme200k import cdme_datasets
datasets = [*cdme_datasets]
internlm_meta_template = dict(round=[
dict(role='HUMAN', begin=':', end='\n'),
dict(role='BOT', begin=':', end='<eoa>\n', generate=True),
],
eos_token_id=103028)
models = [
dict(
type=TurboMindModel,
abbr='internlm-chat-20b-turbomind',
path='./turbomind',
max_out_len=100,
max_seq_len=2048,
batch_size=8,
concurrency=8,
meta_template=internlm_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
```
In this configuration, the `TurboMindModel` combines the functionality of `LMDeploy`, suitable for handling large-scale text datasets and effectively reducing memory usage.
### Score Calculation Method
In the `CDMEEvaluator` class, we use two main methods to calculate scores: `levenshtein_distance` and `score`. Here are detailed explanations and implementations of these methods.
#### Levenshtein Distance
Levenshtein distance is a measure of the difference between two strings. It represents the minimum number of single-character edits (insertions, deletions, or substitutions) required to change one string into the other.
```python
def levenshtein_distance(self, s1, s2):
if len(s1) < len(s2):
return self.levenshtein_distance(s2, s1)
if len(s2) == 0:
return len(s1)
previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
```
#### Score Calculation
The `score` calculation method accepts two lists of predictions and references and calculates the edit distance and score for each pair of prediction and reference.
```python
def score(self, predictions, references):
if len(predictions) != len(references):
return {"error": "predictions and references have different lengths"}
total_score = 0
details = []
for prediction, reference in zip(predictions, references):
prediction = re.sub(r'\s+', '', prediction)
reference = re.sub(r'\s+', '', reference)
edit_distance = self.levenshtein_distance(prediction, reference)
max_len = max(len(prediction), len(reference))
score = 100 * (1 - edit_distance /max_len) if max_len != 0 else 100
detail = {
"pred": prediction,
"ref": reference,
"edit_distance": edit_distance,
"score": score
}
total_score += score
details.append(detail)
average_score = total_score / len(predictions) if predictions else 0
result = {"average_score": average_score, "details": details}
return result
```
This scoring method first removes all whitespace characters from both predictions and references and then calculates the Levenshtein distance between them. The score is calculated as 100 minus the percentage loss based on edit distance. Finally, it returns detailed scores for each prediction and the average score overall.
### Visualization
The `tools_needleinahaystack.py` script can be used to visualize CSV files. This script supports specifying one or more CSV file paths through the `--path` parameter and can use the `--dataset_length` parameter to specify the length of the dataset.
#### Usage Examples
To visualize a single CSV file:
```bash
python tools/tools_needleinahaystack.py --path 'outputs/default/20231216_161457/summary/summary_20231216_161457.csv'
```
To visualize multiple CSV files:
```bash
python tools/tools_needleinahaystack.py --path 'path_to_first_csv.csv' 'path_to_second_csv.csv'
```
To specify the dataset length for visualization, which is used for generating titles in the visualization charts:
```bash
python tools/tools_needleinahaystack.py --path 'path_to_csv.csv' --dataset_length 200K
```
Currently, this approach only supports the CDME dataset, and we welcome community contributions for more datasets.
If you use this method, please cite as follows:
```bibtex
@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished={\url{https://github.com/open-compass/opencompass}},
year={2023}
}
@misc{LLMTest_NeedleInAHaystack,
title={LLMTest Needle In A Haystack - Pressure Testing LLMs},
author={gkamradt},
year={2023},
howpublished={\url{https://github.com/gkamradt/LLMTest_NeedleInAHaystack}}
}
@misc{wei2023skywork,
title={Skywork: A More Open Bilingual Foundation Model},
author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou},
year={2023},
eprint={2310.19341},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|