File size: 2,423 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
# 支持新数据集
尽管 OpenCompass 已经包含了大多数常用数据集,用户在支持新数据集的时候需要完成以下几个步骤:
1. 在 `opencompass/datasets` 文件夹新增数据集脚本 `mydataset.py`, 该脚本需要包含:
- 数据集及其加载方式,需要定义一个 `MyDataset` 类,实现数据集加载方法 `load`,该方法为静态方法,需要返回 `datasets.Dataset` 类型的数据。这里我们使用 huggingface dataset 作为数据集的统一接口,避免引入额外的逻辑。具体示例如下:
```python
import datasets
from .base import BaseDataset
class MyDataset(BaseDataset):
@staticmethod
def load(**kwargs) -> datasets.Dataset:
pass
```
- (可选)如果 OpenCompass 已有的评测器不能满足需要,需要用户定义 `MyDatasetlEvaluator` 类,实现评分方法 `score`,需要根据输入的 `predictions` 和 `references` 列表,得到需要的字典。由于一个数据集可能存在多种 metric,需要返回一个 metrics 以及对应 scores 的相关字典。具体示例如下:
```python
from opencompass.openicl.icl_evaluator import BaseEvaluator
class MyDatasetlEvaluator(BaseEvaluator):
def score(self, predictions: List, references: List) -> dict:
pass
```
- (可选)如果 OpenCompass 已有的后处理方法不能满足需要,需要用户定义 `mydataset_postprocess` 方法,根据输入的字符串得到相应后处理的结果。具体示例如下:
```python
def mydataset_postprocess(text: str) -> str:
pass
```
2. 在定义好数据集加载、评测以及数据后处理等方法之后,需要在配置文件中新增以下配置:
```python
from opencompass.datasets import MyDataset, MyDatasetlEvaluator, mydataset_postprocess
mydataset_eval_cfg = dict(
evaluator=dict(type=MyDatasetlEvaluator),
pred_postprocessor=dict(type=mydataset_postprocess))
mydataset_datasets = [
dict(
type=MyDataset,
...,
reader_cfg=...,
infer_cfg=...,
eval_cfg=mydataset_eval_cfg)
]
```
详细的数据集配置文件以及其他需要的配置文件可以参考[配置文件](../user_guides/config.md)教程,启动任务相关的教程可以参考[快速开始](../get_started/quick_start.md)教程。
|