File size: 15,035 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import copy
import itertools
from typing import Callable, List, Optional, Union
from datasets import Dataset, DatasetDict
from opencompass.openicl.icl_evaluator import BaseEvaluator
from .arc import ARCDataset
from .ceval import CEvalDataset
from .cmmlu import CMMLUDataset
from .commonsenseqa import commonsenseqaDataset
from .hellaswag import hellaswagDataset_V2
from .mmlu import MMLUDataset
from .obqa import OBQADataset
from .piqa import piqaDataset_V2
from .race import RaceDataset
from .siqa import siqaDataset_V3
from .xiezhi import XiezhiDataset
def get_origin_patterns(option_keys):
return [tuple(option_keys)]
def get_circular_patterns(option_keys):
double_option_keys = option_keys + option_keys
circular_patterns = [
tuple(double_option_keys[i:i + len(option_keys)])
for i in range(len(option_keys))
]
return circular_patterns
def get_all_possible_patterns(option_keys):
circular_patterns = list(itertools.permutations(option_keys))
return circular_patterns
class CircularDatasetMeta(type):
"""This Meta Class is designed to transform a class that reads datasets
into one that supports reading datasets required for CircularEval. It
overloads an existing load method for the original class.
The Meta Class should possess the following attributes:
- `dataset_class` (class): The class for reading datasets, such as
`CEvalDataset`.
- `default_circular_splits` (list, optional): The default splits of the
dataset that need to undergo CircularEval, like ['val', 'test']. If a
`Dataset` is loaded originally, this field will be ignored.
- `default_option_keys` (list): The keys for options in the dataset, such
as ['A', 'B', 'C', 'D'].
- `default_answer_key` (str, optional): The key for answers in the dataset,
like 'answer'. This is an alternative to
`default_answer_key_switch_method`.
- `default_answer_key_switch_method` (function, optional): The method to
transform the key for answers in the dataset. This is an alternative to
`default_answer_key`.
"""
@staticmethod
def make_circular_items(
origin_item,
circular_patterns,
option_keys,
answer_key,
answer_key_switch_method,
qid,
):
items = []
for circular_pattern in circular_patterns:
item = copy.deepcopy(origin_item)
for i in range(len(option_keys)):
item[circular_pattern[i]] = origin_item[option_keys[i]]
if answer_key_switch_method is None:
if origin_item[answer_key] in option_keys:
item[answer_key] = circular_pattern[option_keys.index(
origin_item[answer_key])]
else:
pass
else:
item = answer_key_switch_method(item, circular_pattern)
item['qid'] = qid
item['circular_pattern'] = tuple(circular_pattern)
items.append(item)
return items
@staticmethod
def make_circular_dataset(dataset, circular_patterns, option_keys,
answer_key, answer_key_switch_method):
circulated_items = []
for i, item in enumerate(dataset):
item = CircularDatasetMeta.make_circular_items(
item,
circular_patterns,
option_keys,
answer_key,
answer_key_switch_method,
i,
)
circulated_items.extend(item)
return Dataset.from_list(circulated_items)
def make_circular(
dataset: Union[Dataset, DatasetDict],
circular_splits: Optional[List[str]] = ['test'],
circular_patterns: str = 'circular',
option_keys: List[str] = ['A', 'B', 'C', 'D'],
answer_key: Optional[str] = 'answer',
answer_key_switch_method: Optional[Callable] = None,
):
"""Transform the dataset into one that is compatible with CircularEval.
In CircularEval, the original multiple-choice questions with options
ABCD are augmented by shuffling the order of options, such as BCDA,
CDAB, DABC, etc. A model is considered correct only if it answers all
augmented questions correctly. This method effectively prevents models
from memorizing answers.
Args:
datasets: The dataset to be augmented.
circular_splits: List of splits to make circular. This is only
effective when the dataset is a DatasetDict.
circular_patterns: Method for circular processing, can be 'circular'
for single cycle or 'all_possible' for all permutations, default
is 'circular'.
option_keys: List of keys for options, default to ['A', 'B', 'C', 'D'].
answer_key: Key for the answer, default to 'answer'. When specified,
ensure that the content of answer_key is among the option_keys.
It is an alternative to specifying answer_key_switch_method.
answer_key_switch_method: Function to modify the answer_key. It is an
alternative to specifying answer_key.
"""
if isinstance(circular_patterns, str):
if circular_patterns == 'circular':
circular_patterns = get_circular_patterns(option_keys)
elif circular_patterns == 'all_possible':
circular_patterns = get_all_possible_patterns(option_keys)
else:
raise ValueError(
f'Unknown circular_patterns: {circular_patterns}')
else:
assert isinstance(circular_patterns, list)
assert all([isinstance(i, list) for i in circular_patterns])
# TODO: other necessary sanity checks
raise NotImplementedError(
'circular_patterns int list of list has not been tested yet')
if answer_key is None and answer_key_switch_method is None:
raise ValueError(
'answer_key and answer_key_switch_method cannot be both None')
if answer_key is not None and answer_key_switch_method is not None:
raise ValueError(
'either answer_key or answer_key_switch_method should be None')
if isinstance(dataset, Dataset):
dataset = CircularDatasetMeta.make_circular_dataset(
dataset,
circular_patterns,
option_keys,
answer_key,
answer_key_switch_method,
)
else:
assert isinstance(dataset, DatasetDict)
dataset_dict = {}
for split in dataset:
if circular_splits is not None and split in circular_splits:
dataset_dict[
split] = CircularDatasetMeta.make_circular_dataset(
dataset[split],
circular_patterns,
option_keys,
answer_key,
answer_key_switch_method,
)
else:
dataset_dict[split] = dataset[split]
dataset = DatasetDict(dataset_dict)
return dataset
def __new__(cls, name, bases, dct):
new_cls = super().__new__(cls, name, bases, dct)
def load(cls, circular_patterns='circular', *args, **kwargs):
circular_splits = getattr(cls, 'default_circular_splits', None)
option_keys = getattr(cls, 'default_option_keys', None)
if 'option_keys' in kwargs:
option_keys = kwargs.pop('option_keys')
assert option_keys is not None, 'option_keys cannot be None'
answer_key = getattr(cls, 'default_answer_key', None)
if 'answer_key' in kwargs:
answer_key = kwargs.pop('answer_key')
answer_key_switch_method = getattr(
cls, 'default_answer_key_switch_method', None)
dataset = cls.dataset_class.load(*args, **kwargs)
return CircularDatasetMeta.make_circular(
dataset,
circular_splits,
circular_patterns,
option_keys,
answer_key,
answer_key_switch_method,
)
setattr(new_cls, 'load', classmethod(load))
return new_cls
class CircularCEvalDataset(CEvalDataset, metaclass=CircularDatasetMeta):
dataset_class = CEvalDataset
default_circular_splits = ['val', 'test']
default_option_keys = ['A', 'B', 'C', 'D']
default_answer_key = 'answer'
class CircularMMLUDataset(MMLUDataset, metaclass=CircularDatasetMeta):
dataset_class = MMLUDataset
default_circular_splits = ['test']
default_option_keys = ['A', 'B', 'C', 'D']
default_answer_key = 'target'
class CircularCMMLUDataset(CMMLUDataset, metaclass=CircularDatasetMeta):
dataset_class = CMMLUDataset
default_circular_splits = ['test']
default_option_keys = ['A', 'B', 'C', 'D']
default_answer_key = 'answer'
class CircularCSQADataset(commonsenseqaDataset, metaclass=CircularDatasetMeta):
dataset_class = commonsenseqaDataset
default_circular_splits = ['validation']
default_option_keys = ['A', 'B', 'C', 'D', 'E']
default_answer_key = 'answerKey'
class CircularARCDataset(ARCDataset, metaclass=CircularDatasetMeta):
dataset_class = ARCDataset
default_circular_splits = None
default_option_keys = ['textA', 'textB', 'textC', 'textD']
def default_answer_key_switch_method(item, circular_pattern):
circular_pattern = tuple(i[-1] for i in circular_pattern)
item['answerKey'] = circular_pattern['ABCD'.index(item['answerKey'])]
return item
class CircularHSWAGDataset(hellaswagDataset_V2, metaclass=CircularDatasetMeta):
dataset_class = hellaswagDataset_V2
default_circular_splits = None
default_option_keys = ['A', 'B', 'C', 'D']
default_answer_key = 'label'
class CircularOBQADataset(OBQADataset, metaclass=CircularDatasetMeta):
dataset_class = OBQADataset
default_circular_splits = None
default_option_keys = ['A', 'B', 'C', 'D']
default_answer_key = 'answerKey'
class CircularRaceDataset(RaceDataset, metaclass=CircularDatasetMeta):
dataset_class = RaceDataset
default_circular_splits = ['test']
default_option_keys = ['A', 'B', 'C', 'D']
default_answer_key = 'answer'
class CircularXiezhiDataset(XiezhiDataset, metaclass=CircularDatasetMeta):
dataset_class = XiezhiDataset
default_circular_splits = None
default_option_keys = ['A', 'B', 'C', 'D']
default_answer_key = 'answer'
class CircularsiqaDataset(siqaDataset_V3, metaclass=CircularDatasetMeta):
dataset_class = siqaDataset_V3
default_circular_splits = ['validation']
default_option_keys = ['A', 'B', 'C']
default_answer_key = 'answer'
class CircularpiqaDataset(piqaDataset_V2, metaclass=CircularDatasetMeta):
dataset_class = piqaDataset_V2
default_circular_splits = ['validation']
default_option_keys = ['sol1', 'sol2']
def default_answer_key_switch_method(item, circular_pattern):
circular_pattern = tuple(int(i[-1]) - 1 for i in circular_pattern)
item['answer'] = 'AB'[circular_pattern['AB'.index(item['answer'])]]
return item
class CircularEvaluator(BaseEvaluator):
"""This Evaluator assesses datasets post-Circular processing, generating
the following evaluation metrics:
- `acc_{origin|circular|all_possible}`: Treats each question with shuffled
answer options as separate, calculating accuracy.
- `perf_{origin|circular|all_possible}`: According Circular logic, a
question is considered correct only if all its variations with shuffled
options are answered correctly, calculating accuracy. perf is short for
perfect.
- `more_{num}_{origin|circular|all_possible}`: According to Circular logic,
a question is considered correct only if the number of its variations
answered correctly is greater than or equal to `num`, calculating
accuracy.
Note that when the `all_possible` method is used to shuffle option order,
it naturally includes the Circular method, and its metrics will also be
output.
Args:
circular_pattern: The method of shuffling options, either 'circular' or
'all_possible', defaulting to 'circular'.
"""
def __init__(self, circular_pattern='circular'):
super().__init__()
self.circular_pattern = circular_pattern
def score(self, predictions, references, test_set):
circular_patterns = {}
circular_patterns['origin'] = get_origin_patterns(
test_set[0]['circular_pattern'])
circular_patterns['circular'] = get_circular_patterns(
test_set[0]['circular_pattern'])
if self.circular_pattern == 'all_possible':
circular_patterns['all_possible'] = get_all_possible_patterns(
test_set[0]['circular_pattern'])
metrics = {}
tmp_metrics = {}
tmp_metrics.update({f'correct_{k}': 0 for k in circular_patterns})
tmp_metrics.update({f'count_{k}': 0 for k in circular_patterns})
# calculate the original accuracy
for pred, refr, origin_item in zip(predictions, references, test_set):
circular_pattern = origin_item['circular_pattern']
for k in circular_patterns:
if tuple(circular_pattern) in circular_patterns[k]:
tmp_metrics[f'correct_{k}'] += 1 if pred == refr else 0
tmp_metrics[f'count_{k}'] += 1
for k in circular_patterns:
metrics[f'acc_{k}'] = (tmp_metrics[f'correct_{k}'] /
tmp_metrics[f'count_{k}'] * 100)
# calculate the circular accuracy
_details = {k: {} for k in circular_patterns}
for pred, refr, origin_item in zip(predictions, references, test_set):
index = origin_item['qid']
circular_pattern = origin_item['circular_pattern']
for k in circular_patterns:
if tuple(circular_pattern) in circular_patterns[k]:
_details[k].setdefault(
index, []).append(True if pred == refr else False)
for k in _details:
_details[k] = {
index: sum(_details[k][index])
for index in _details[k]
}
for k in _details:
for j in range(1, len(circular_patterns[k]) + 1):
count = sum([_details[k][index] >= j for index in _details[k]])
total = len(_details[k])
if j != len(circular_patterns[k]):
metrics[f'more_{j}_{k}'] = count / total * 100
else:
metrics[f'perf_{k}'] = count / total * 100
return metrics
|