File size: 17,935 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import re
import sys
import threading
import time
import warnings
from abc import abstractmethod
from copy import deepcopy
from queue import Queue
from time import sleep
from typing import Dict, List, Optional, Tuple, Union

from opencompass.utils import get_logger
from opencompass.utils.prompt import PromptList

from .base import BaseModel

PromptType = Union[PromptList, str]


class BaseAPIModel(BaseModel):
    """Base class for API model wrapper.

    Args:
        path (str): The path to the model.
        query_per_second (int): The maximum queries allowed per second
            between two consecutive calls of the API. Defaults to 1.
        retry (int): Number of retires if the API call fails. Defaults to 2.
        max_seq_len (int): The maximum sequence length of the model. Defaults
            to 2048.
        meta_template (Dict, optional): The model's meta prompt
            template if needed, in case the requirement of injecting or
            wrapping of any meta instructions.
        generation_kwargs (Dict, optional): The generation kwargs for the
            model. Defaults to dict().
    """

    is_api: bool = True

    def __init__(self,
                 path: str,
                 query_per_second: int = 1,
                 rpm_verbose: bool = False,
                 retry: int = 2,
                 max_seq_len: int = 2048,
                 meta_template: Optional[Dict] = None,
                 generation_kwargs: Dict = dict()):
        self.path = path
        self.max_seq_len = max_seq_len
        self.meta_template = meta_template
        self.retry = retry
        self.query_per_second = query_per_second
        self.token_bucket = TokenBucket(query_per_second, rpm_verbose)
        self.template_parser = APITemplateParser(meta_template)
        self.logger = get_logger()
        self.generation_kwargs = generation_kwargs

    @abstractmethod
    def generate(self, inputs: List[PromptType],
                 max_out_len: int) -> List[str]:
        """Generate results given a list of inputs.

        Args:
            inputs (List[str or PromptList]): A list of strings or PromptDicts.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.

        Returns:
            List[str]: A list of generated strings.
        """
        raise NotImplementedError(f'{self.__class__.__name__} does not support'
                                  ' gen-based evaluation yet, try ppl-based '
                                  'instead.')

    def flush(self):
        """Ensure simultaneous emptying of stdout and stderr when concurrent
        resources are available.

        When employing multiprocessing with standard I/O redirected to files,
        it is crucial to clear internal data for examination or prevent log
        loss in case of system failures."
        """
        if hasattr(self, 'tokens'):
            sys.stdout.flush()
            sys.stderr.flush()

    def acquire(self):
        """Acquire concurrent resources if exists.

        This behavior will fall back to wait with query_per_second if there are
        no concurrent resources.
        """
        if hasattr(self, 'tokens'):
            self.tokens.acquire()
        else:
            self.wait()

    def release(self):
        """Release concurrent resources if acquired.

        This behavior will fall back to do nothing if there are no concurrent
        resources.
        """
        if hasattr(self, 'tokens'):
            self.tokens.release()

    @abstractmethod
    def get_ppl(self,
                inputs: List[PromptType],
                mask_length: Optional[List[int]] = None) -> List[float]:
        """Get perplexity scores given a list of inputs.

        Args:
            inputs (List[str or PromptList]): A list of strings.
            mask_length (Optional[List[int]]): A list of mask lengths. If
                provided, the perplexity scores will be calculated with the
                first mask_length[i] tokens masked out. It's okay to skip
                its implementation if advanced features in PPLInfernecer is
                not needed.

        Returns:
            List[float]: A list of perplexity scores.
        """
        raise NotImplementedError(f'{self.__class__.__name__} does not support'
                                  ' ppl-based evaluation yet, try gen-based '
                                  'instead.')

    def get_token_len(self, prompt: str) -> int:
        """Get lengths of the tokenized string. Only English and Chinese
        characters are counted for now. Users are encouraged to override this
        method if more accurate length is needed.

        Args:
            prompt (str): Input string.

        Returns:
            int: Length of the input tokens
        """

        english_parts = re.findall(r'[A-Za-z0-9]+', prompt)
        chinese_parts = re.findall(r'[\u4e00-\u9FFF]+', prompt)

        # Count English words
        english_count = sum(len(part.split()) for part in english_parts)

        # Count Chinese words
        chinese_count = sum(len(part) for part in chinese_parts)

        return english_count + chinese_count

    def wait(self):
        """Wait till the next query can be sent.

        Applicable in both single-thread and multi-thread environments.
        """
        return self.token_bucket.get_token()

    def to(self, device):
        pass


class APITemplateParser:
    """Intermidate prompt template parser, specifically for API models.

    Args:
        meta_template (Dict): The meta template for the model.
    """

    def __init__(self, meta_template: Optional[Dict] = None):
        self.meta_template = meta_template
        # Check meta template
        if meta_template:
            assert 'round' in meta_template, 'round is required in meta' \
                ' template'
            assert isinstance(meta_template['round'], list)
            keys_to_check = ['round']

            if 'reserved_roles' in meta_template:
                assert isinstance(meta_template['reserved_roles'], list)
                keys_to_check.append('reserved_roles')

            self.roles: Dict[str, dict] = dict()  # maps role name to config
            for meta_key in keys_to_check:
                for item in meta_template[meta_key]:
                    assert isinstance(item, (str, dict))
                    if isinstance(item, dict):
                        assert item['role'] not in self.roles, \
                            'role in meta prompt must be unique!'
                        self.roles[item['role']] = item.copy()

    def parse_template(self, prompt_template: PromptType,
                       mode: str) -> PromptType:
        """Parse the intermidate prompt template, and wrap it with meta
        template if applicable. When the meta template is set and the input is
        a PromptList, the return value will be a PromptList containing the full
        conversation history. Each item looks like:

        .. code-block:: python

            {'role': 'user', 'prompt': '...'}).

        Args:
            prompt_template (List[str or PromptList]): An intermidate prompt
                template (potentially before being wrapped by meta template).
            mode (str): Parsing mode. Choices are 'ppl' and 'gen'.

        Returns:
            List[str or PromptList]: The finalized prompt or a conversation.
        """
        assert isinstance(prompt_template, (str, list, PromptList, tuple))

        if not isinstance(prompt_template, (str, PromptList)):
            return [self.parse_template(p, mode=mode) for p in prompt_template]

        assert mode in ['ppl', 'gen']
        if isinstance(prompt_template, str):
            return prompt_template
        if self.meta_template:

            prompt = PromptList()
            # Whether to keep generating the prompt
            generate = True

            section_stack = []  # stores tuples: (section_name, start_idx)

            for i, item in enumerate(prompt_template):
                if not generate:
                    break
                if isinstance(item, str):
                    if item.strip():
                        # TODO: logger
                        warnings.warn('Non-empty string in prompt template '
                                      'will be ignored in API models.')
                elif isinstance(item, dict) and 'section' in item:
                    if item['pos'] == 'end':
                        section_name, start_idx = section_stack.pop(-1)
                        assert section_name == item['section']
                        if section_name in ['round', 'ice']:
                            dialogue = prompt_template[start_idx:i]
                            round_ranges = self._split_rounds(
                                dialogue, self.meta_template['round'])
                            # Consider inserting multiple round examples into
                            # template
                            for i in range(len(round_ranges) - 1):
                                start = round_ranges[i]
                                end = round_ranges[i + 1]
                                round_template = dialogue[start:end]
                                role_dict = self._update_role_dict(
                                    round_template)
                                api_prompts, generate = self._prompt2api(
                                    self.meta_template['round'],
                                    role_dict,
                                    # Start generating only when the mode is in
                                    # generation and the template reaches the
                                    # last round
                                    for_gen=mode == 'gen'
                                    and section_name == 'round'
                                    and i == len(round_ranges) - 2)
                                prompt += api_prompts
                    elif item['pos'] == 'begin':
                        assert item['section'] in [
                            'begin', 'round', 'end', 'ice'
                        ]
                        section_stack.append((item['section'], i + 1))
                    else:
                        raise ValueError(f'Invalid pos {item["pos"]}')
                elif section_stack[-1][0] in ['begin', 'end']:
                    role_dict = self._update_role_dict(item)
                    api_prompts, generate = self._prompt2api(
                        item, role_dict, for_gen=mode == 'gen')
                    prompt.append(api_prompts)

            # merge the consecutive prompts assigned to the same role
            new_prompt = PromptList([prompt[0]])
            last_role = prompt[0]['role']
            for item in prompt[1:]:
                if item['role'] == last_role:
                    new_prompt[-1]['prompt'] += '\n' + item['prompt']
                else:
                    last_role = item['role']
                    new_prompt.append(item)
            prompt = new_prompt

        else:
            # in case the model does not have any meta template
            prompt = ''
            last_sep = ''
            for item in prompt_template:
                if isinstance(item, dict) and set(['section', 'pos']) == set(
                        item.keys()):
                    continue
                if isinstance(item, str):
                    if item:
                        prompt += last_sep + item
                elif item.get('prompt', ''):
                    prompt += last_sep + item.get('prompt', '')
                last_sep = '\n'
        return prompt

    def _update_role_dict(self, prompts: Union[List, str]) -> Dict[str, Dict]:
        """Update the default role dict with the given prompts."""
        role_dict = deepcopy(self.roles)
        if isinstance(prompts, str):
            return role_dict
        elif isinstance(prompts, dict):
            prompts = [prompts]
        for prompt in prompts:
            if isinstance(prompt, dict):
                role = prompt['role']
                if role not in self.roles:
                    role = prompt.get('fallback_role', None)
                    if not role:
                        print(f'{prompt} neither has an appropriate role nor '
                              'a fallback role.')
                role_dict[role].update(prompt)
        return role_dict

    def _split_rounds(
            self, prompt_template: List[Union[str, Dict]],
            single_round_template: List[Union[str, Dict]]) -> List[int]:
        """Split the prompt template into rounds, based on single round
        template.

        Return the index ranges of each round. Specifically,
        prompt_template[res[i]:res[i+1]] represents the i-th round in the
        template.
        """
        role_idxs = {
            role_cfg['role']: i
            for i, role_cfg in enumerate(single_round_template)
            if not isinstance(role_cfg, str)
        }
        last_role_idx = -1
        cutoff_idxs = [0]
        for idx, template in enumerate(prompt_template):
            if isinstance(template, str):
                continue
            role_idx = role_idxs.get(template['role'], None)
            if role_idx is None:
                try:
                    role_idx = role_idxs[template['fallback_role']]
                except KeyError:
                    raise KeyError(f'{template} neither has an appropriate '
                                   'role nor a fallback role.')
            if role_idx <= last_role_idx:
                cutoff_idxs.append(idx)
            last_role_idx = role_idx
        cutoff_idxs.append(len(prompt_template))
        return cutoff_idxs

    def _prompt2api(self,
                    prompts: Union[List, str],
                    role_dict: Dict[str, Dict],
                    for_gen: bool = False) -> Tuple[str, bool]:
        """Convert the prompts to a API-style prompts, given an updated
        role_dict.

        Args:
            prompts (Union[List, str]): The prompts to be converted.
            role_dict (Dict[str, Dict]): The updated role dict.
            for_gen (bool): If True, the prompts will be converted for
                generation tasks. The conversion stops before the first
                role whose "generate" is set to True.

        Returns:
            Tuple[str, bool]: The converted string, and whether the follow-up
            conversion should be proceeded.
        """
        cont = True
        if isinstance(prompts, str):
            return prompts, cont
        elif isinstance(prompts, dict):
            api_role, cont = self._role2api_role(prompts, role_dict, for_gen)
            return api_role, cont

        res = []
        for prompt in prompts:
            if isinstance(prompt, str):
                raise TypeError('Mixing str without explictt role is not '
                                'allowed in API models!')
            else:
                api_role, cont = self._role2api_role(prompt, role_dict,
                                                     for_gen)
                if api_role:
                    res.append(api_role)
                if not cont:
                    break
        return res, cont

    def _role2api_role(self,
                       role_prompt: Dict,
                       role_dict: Dict[str, Dict],
                       for_gen: bool = False) -> Tuple[str, bool]:
        """Convert a role prompt to a string, given an updated role_dict.

        Args:
            role_prompt (Dict): The role prompt to be converted.
            role_dict (Dict[str, Dict]): The updated role dict.
            for_gen (bool): If True, the prompts will be converted for
                generation tasks. The conversion stops before the first
                role whose "generate" is set to True.

        Returns:
            Tuple[str, bool]: The converted string, and whether the follow-up
            conversion should be proceeded.
        """
        merged_prompt = role_dict.get(
            role_prompt['role'],
            role_dict.get(role_prompt.get('fallback_role')))
        # res_api_prompt = dict(type='', )
        if for_gen and merged_prompt.get('generate', False):
            return None, False
        res = {}
        res['role'] = merged_prompt['api_role']
        res['prompt'] = merged_prompt.get('begin', '')
        res['prompt'] += merged_prompt.get('prompt', '')
        res['prompt'] += merged_prompt.get('end', '')
        return res, True


class TokenBucket:
    """A token bucket for rate limiting.

    Args:
        query_per_second (float): The rate of the token bucket.
    """

    def __init__(self, rate, verbose=False):
        self._rate = rate
        self._tokens = threading.Semaphore(0)
        self.started = False
        self._request_queue = Queue()
        self.logger = get_logger()
        self.verbose = verbose

    def _add_tokens(self):
        """Add tokens to the bucket."""
        while True:
            if self._tokens._value < self._rate:
                self._tokens.release()
            sleep(1 / self._rate)

    def get_token(self):
        """Get a token from the bucket."""
        if not self.started:
            self.started = True
            threading.Thread(target=self._add_tokens, daemon=True).start()
        self._tokens.acquire()
        if self.verbose:
            cur_time = time.time()
            while not self._request_queue.empty():
                if cur_time - self._request_queue.queue[0] > 60:
                    self._request_queue.get()
                else:
                    break
            self._request_queue.put(cur_time)
            self.logger.info(f'Current RPM {self._request_queue.qsize()}.')