File size: 33,985 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
import os
from typing import Dict, List, Optional, Union
import numpy as np
import torch
import transformers
from opencompass.models.base import BaseModel
from opencompass.models.base_api import APITemplateParser
from opencompass.registry import MODELS
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList
PromptType = Union[PromptList, str]
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
"""Criteria to stop on the specified multi-token sequence."""
def __init__(
self,
sequence: str,
tokenizer: transformers.PreTrainedTokenizer,
batch_size: int,
):
self.done_tracker = [False] * batch_size
self.sequence = sequence
self.sequence_ids = tokenizer.encode(sequence,
add_special_tokens=False)
self.sequence_id_len = len(self.sequence_ids)
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs) -> bool:
# compare the last len(stop) tokens
lookback_ids_batch = input_ids[:, -self.sequence_id_len:]
lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
for i, done in enumerate(self.done_tracker):
if done:
continue
self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
return False not in self.done_tracker
@MODELS.register_module()
class HuggingFace(BaseModel):
"""Model wrapper around HuggingFace models.
Args:
path (str): The name or path to HuggingFace's model.
hf_cache_dir: Set the cache dir to HF model cache dir. If None, it will
use the env variable HF_MODEL_HUB. Defaults to None.
max_seq_len (int): The maximum length of the input sequence. Defaults
to 2048.
tokenizer_path (str): The path to the tokenizer. Defaults to None.
tokenizer_kwargs (dict): Keyword arguments for the tokenizer.
Defaults to {}.
peft_path (str, optional): The name or path to the HuggingFace's PEFT
model. If None, the original model will not be converted to PEFT.
Defaults to None.
tokenizer_only (bool): If True, only the tokenizer will be initialized.
Defaults to False.
model_kwargs (dict): Keyword arguments for the model, used in loader.
Defaults to dict(device_map='auto').
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
extract_pred_after_decode (bool): Whether to extract the prediction
string from the decoded output string, instead of extract the
prediction tokens before decoding. Defaults to False.
batch_padding (bool): If False, inference with be performed in for-loop
without batch padding.
pad_token_id (int): The id of the padding token. Defaults to None. Use
(#vocab + pad_token_id) if get negative value.
mode (str, optional): The method of input truncation when input length
exceeds max_seq_len. 'mid' represents the part of input to
truncate. Defaults to 'none'.
use_fastchat_template (str, optional): Whether to use fastchat to get
the conversation template. If True, fastchat needs to be
implemented first. Defaults to False.
end_str (str, optional): Whether to trim generated strings with end_str
if the model has special ending strings that are not handled well.
Defaults to None.
Note:
About ``extract_pred_after_decode``: Commonly, we should extract the
the prediction tokens before decoding. But for some tokenizers using
``sentencepiece``, like LLaMA, this behavior may change the number of
whitespaces, which is harmful for Python programming tasks.
"""
def __init__(self,
path: str,
hf_cache_dir: Optional[str] = None,
max_seq_len: int = 2048,
tokenizer_path: Optional[str] = None,
tokenizer_kwargs: dict = dict(),
peft_path: Optional[str] = None,
tokenizer_only: bool = False,
model_kwargs: dict = dict(device_map='auto'),
generation_kwargs: dict = dict(),
meta_template: Optional[Dict] = None,
extract_pred_after_decode: bool = False,
batch_padding: bool = False,
pad_token_id: Optional[int] = None,
mode: str = 'none',
use_fastchat_template: bool = False,
end_str: Optional[str] = None):
super().__init__(path=path,
max_seq_len=max_seq_len,
tokenizer_only=tokenizer_only,
meta_template=meta_template)
if hf_cache_dir is None:
hf_cache_dir = os.getenv('HF_MODEL_HUB', None)
self.logger = get_logger()
self.pad_token_id = pad_token_id
assert mode in ['none', 'mid']
self.mode = mode
self._load_tokenizer(path=path,
tokenizer_path=tokenizer_path,
tokenizer_kwargs=tokenizer_kwargs)
self.batch_padding = batch_padding
self.extract_pred_after_decode = extract_pred_after_decode
if not tokenizer_only:
self._load_model(path=path,
model_kwargs=model_kwargs,
peft_path=peft_path)
self.generation_kwargs = generation_kwargs
self.use_fastchat_template = use_fastchat_template
self.end_str = end_str
def _load_tokenizer(self, path: str, tokenizer_path: Optional[str],
tokenizer_kwargs: dict):
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path if tokenizer_path else path, **tokenizer_kwargs)
# A patch for some models without pad_token_id
if self.pad_token_id is not None:
if self.pad_token_id < 0:
self.pad_token_id += self.tokenizer.vocab_size
if self.tokenizer.pad_token_id is None:
self.logger.debug(f'Using {self.pad_token_id} as pad_token_id')
elif self.tokenizer.pad_token_id != self.pad_token_id:
self.logger.warning(
'pad_token_id is not consistent with the tokenizer. Using '
f'{self.pad_token_id} as pad_token_id')
self.tokenizer.pad_token_id = self.pad_token_id
elif self.tokenizer.pad_token_id is None:
self.logger.warning('pad_token_id is not set for the tokenizer.')
if self.tokenizer.eos_token is not None:
self.logger.warning(
f'Using eos_token_id {self.tokenizer.eos_token} '
'as pad_token_id.')
self.tokenizer.pad_token = self.tokenizer.eos_token
else:
from transformers.generation import GenerationConfig
gcfg = GenerationConfig.from_pretrained(path)
if gcfg.pad_token_id is not None:
self.logger.warning(
f'Using pad_token_id {gcfg.pad_token_id} '
'as pad_token_id.')
self.tokenizer.pad_token_id = gcfg.pad_token_id
else:
raise ValueError(
'pad_token_id is not set for this tokenizer. Try to '
'set pad_token_id via passing '
'`pad_token_id={PAD_TOKEN_ID}` in model_cfg.')
# A patch for llama when batch_padding = True
if 'decapoda-research/llama' in path or \
(tokenizer_path and
'decapoda-research/llama' in tokenizer_path):
self.logger.warning('We set new pad_token_id for LLaMA model')
# keep consistent with official LLaMA repo
# https://github.com/google/sentencepiece/blob/master/python/sentencepiece_python_module_example.ipynb # noqa
self.tokenizer.bos_token = '<s>'
self.tokenizer.eos_token = '</s>'
self.tokenizer.pad_token_id = 0
def _set_model_kwargs_torch_dtype(self, model_kwargs):
if 'torch_dtype' not in model_kwargs:
torch_dtype = torch.float16
else:
torch_dtype = {
'torch.float16': torch.float16,
'torch.bfloat16': torch.bfloat16,
'torch.float': torch.float,
'auto': 'auto',
'None': None
}.get(model_kwargs['torch_dtype'])
self.logger.debug(f'HF using torch_dtype: {torch_dtype}')
if torch_dtype is not None:
model_kwargs['torch_dtype'] = torch_dtype
def _load_model(self,
path: str,
model_kwargs: dict,
peft_path: Optional[str] = None):
from transformers import AutoModel, AutoModelForCausalLM
self._set_model_kwargs_torch_dtype(model_kwargs)
try:
self.model = AutoModelForCausalLM.from_pretrained(
path, **model_kwargs)
except ValueError:
self.model = AutoModel.from_pretrained(path, **model_kwargs)
if peft_path is not None:
from peft import PeftModel
self.model = PeftModel.from_pretrained(self.model,
peft_path,
is_trainable=False)
self.model.eval()
self.model.generation_config.do_sample = False
# A patch for llama when batch_padding = True
if 'decapoda-research/llama' in path:
self.model.config.bos_token_id = 1
self.model.config.eos_token_id = 2
self.model.config.pad_token_id = self.tokenizer.pad_token_id
def generate(self,
inputs: List[str],
max_out_len: int,
min_out_len: Optional[int] = None,
stopping_criteria: List[str] = [],
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings.
max_out_len (int): The maximum length of the output.
min_out_len (Optional[int]): The minimum length of the output.
Returns:
List[str]: A list of generated strings.
"""
generation_kwargs = kwargs.copy()
generation_kwargs.update(self.generation_kwargs)
if self.batch_padding and len(inputs) > 1:
return self._batch_generate(inputs=inputs,
max_out_len=max_out_len,
min_out_len=min_out_len,
stopping_criteria=stopping_criteria,
**generation_kwargs)
else:
return sum(
(self._single_generate(inputs=[input_],
max_out_len=max_out_len,
min_out_len=min_out_len,
stopping_criteria=stopping_criteria,
**generation_kwargs)
for input_ in inputs), [])
def _batch_generate(self,
inputs: List[str],
max_out_len: int,
min_out_len: Optional[int] = None,
stopping_criteria: List[str] = [],
**kwargs) -> List[str]:
"""Support for batch prompts inference.
Args:
inputs (List[str]): A list of strings.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
if self.extract_pred_after_decode:
prompt_lens = [len(input_) for input_ in inputs]
if self.use_fastchat_template:
try:
from fastchat.model import get_conversation_template
except ModuleNotFoundError:
raise ModuleNotFoundError(
'Fastchat is not implemented. You can use '
'\'pip install "fschat[model_worker,webui]"\' '
'to implement fastchat.')
for i in range(len(inputs)):
conv = get_conversation_template('vicuna')
conv.append_message(conv.roles[0], inputs[i])
conv.append_message(conv.roles[1], None)
inputs[i] = conv.get_prompt()
# step-1: tokenize the input with batch_encode_plus
tokens = self.tokenizer.batch_encode_plus(inputs,
padding=True,
truncation=True,
max_length=self.max_seq_len -
max_out_len)
tokens = {
k: torch.tensor(np.array(tokens[k]), device=self.model.device)
for k in tokens if k in ['input_ids', 'attention_mask']
}
if stopping_criteria:
# Construct huggingface stopping criteria
if self.tokenizer.eos_token is not None:
stopping_criteria = stopping_criteria + [
self.tokenizer.eos_token
]
stopping_criteria = transformers.StoppingCriteriaList([
*[
MultiTokenEOSCriteria(sequence, self.tokenizer,
tokens['input_ids'].shape[0])
for sequence in stopping_criteria
],
])
kwargs['stopping_criteria'] = stopping_criteria
if min_out_len is not None:
kwargs['min_new_tokens'] = min_out_len
# step-2: conduct model forward to generate output
outputs = self.model.generate(**tokens,
max_new_tokens=max_out_len,
**kwargs)
if not self.extract_pred_after_decode:
outputs = outputs[:, tokens['input_ids'].shape[1]:]
decodeds = self.tokenizer.batch_decode(outputs,
skip_special_tokens=True)
if self.extract_pred_after_decode:
decodeds = [
token[len_:] for token, len_ in zip(decodeds, prompt_lens)
]
if self.end_str:
decodeds = [token.split(self.end_str)[0] for token in decodeds]
return decodeds
def _single_generate(self,
inputs: List[str],
max_out_len: int,
min_out_len: Optional[int] = None,
stopping_criteria: List[str] = [],
**kwargs) -> List[str]:
"""Support for single prompt inference.
Args:
inputs (List[str]): A list of strings.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
if self.extract_pred_after_decode:
prompt_lens = [len(input_) for input_ in inputs]
if self.use_fastchat_template:
try:
from fastchat.model import get_conversation_template
except ModuleNotFoundError:
raise ModuleNotFoundError(
'Fastchat is not implemented. You can use '
'\'pip install "fschat[model_worker,webui]"\' '
'to implement fastchat.')
conv = get_conversation_template('vicuna')
conv.append_message(conv.roles[0], inputs[0])
conv.append_message(conv.roles[1], None)
inputs = [conv.get_prompt()]
if self.mode == 'mid':
input_ids = self.tokenizer(inputs, truncation=False)['input_ids']
input_ids = torch.tensor(input_ids, device=self.model.device)
if len(input_ids[0]) > self.max_seq_len - max_out_len:
half = int((self.max_seq_len - max_out_len) / 2)
inputs = [
self.tokenizer.decode(input_ids[0][:half],
skip_special_tokens=True) +
self.tokenizer.decode(input_ids[0][-half:],
skip_special_tokens=True)
]
input_ids = self.tokenizer(inputs,
truncation=True,
max_length=self.max_seq_len -
max_out_len)['input_ids']
input_ids = torch.tensor(input_ids, device=self.model.device)
if stopping_criteria:
# Construct huggingface stopping criteria
if self.tokenizer.eos_token is not None:
stopping_criteria = stopping_criteria + [
self.tokenizer.eos_token
]
stopping_criteria = transformers.StoppingCriteriaList([
*[
MultiTokenEOSCriteria(sequence, self.tokenizer,
input_ids.shape[0])
for sequence in stopping_criteria
],
])
kwargs['stopping_criteria'] = stopping_criteria
if min_out_len is not None:
kwargs['min_new_tokens'] = min_out_len
# To accommodate the PeftModel, parameters should be passed in
# key-value format for generate.
outputs = self.model.generate(input_ids=input_ids,
max_new_tokens=max_out_len,
**kwargs)
if not self.extract_pred_after_decode:
outputs = outputs[:, input_ids.shape[1]:]
decodeds = self.tokenizer.batch_decode(outputs,
skip_special_tokens=True)
if self.extract_pred_after_decode:
decodeds = [
token[len_:] for token, len_ in zip(decodeds, prompt_lens)
]
if self.end_str:
decodeds = [token.split(self.end_str)[0] for token in decodeds]
return decodeds
def get_logits(self, inputs: List[str]):
if self.batch_padding and len(inputs) > 1:
# batch inference
tokens = self.tokenizer(inputs,
padding=True,
truncation=True,
max_length=self.max_seq_len)
tokens = {
k: torch.tensor(np.array(tokens[k]), device=self.model.device)
for k in tokens if k in ['input_ids', 'attention_mask']
}
outputs = self.model(**tokens)
else:
input_ids = self.tokenizer(
inputs,
padding=False,
truncation=True,
max_length=self.max_seq_len)['input_ids']
input_ids = torch.tensor(input_ids, device=self.model.device)
tokens = {'input_ids': input_ids}
outputs = self.model(input_ids)
return outputs[0], {'tokens': tokens}
def get_ppl(self,
inputs: List[str],
mask_length: Optional[List[int]] = None) -> List[float]:
"""Get perplexity scores given a list of inputs.
Args:
inputs (List[str]): A list of strings.
mask_length (Optional[List[int]]): A list of mask lengths. If
provided, the perplexity scores will be calculated with the
first mask_length[i] tokens masked out. It's okay to skip
its implementation if advanced features in PPLInfernecer is
not needed.
Returns:
List[float]: A list of perplexity scores.
"""
if self.batch_padding and len(inputs) > 1:
assert self.tokenizer.pad_token
return self._get_ppl(inputs, mask_length=mask_length)
else:
return np.concatenate([
self._get_ppl(inputs=[text], mask_length=mask_length)
for text in inputs
])
def _get_ppl(self,
inputs: List[str],
mask_length: Optional[List[int]] = None) -> List[float]:
"""Get perplexity scores given a list of inputs.
Args:
inputs (List[str]): A list of strings.
mask_length (Optional[List[int]]): A list of mask lengths. If
provided, the perplexity scores will be calculated with the
first mask_length[i] tokens masked out. It's okay to skip
its implementation if advanced features in PPLInfernecer is
not needed.
Returns:
List[float]: A list of perplexity scores.
"""
outputs, inputs = self.get_logits(inputs)
shift_logits = outputs[..., :-1, :].contiguous().float()
shift_labels = inputs['tokens']['input_ids'][..., 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(
reduction='none', ignore_index=self.tokenizer.pad_token_id)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1)).view(shift_labels.size())
if mask_length is not None:
mask = torch.zeros_like(shift_labels) # [batch,seqlen]
for i in range(len(mask)):
for j in range(mask_length[i] - 1, len(mask[i])):
mask[i][j] = 1
loss = loss * mask
lens = (inputs['tokens']['input_ids'] !=
self.tokenizer.pad_token_id).sum(-1).cpu().numpy()
if mask_length is not None:
lens -= np.array(mask_length)
ce_loss = loss.float().sum(-1).cpu().detach().numpy() / lens
return ce_loss
def get_loglikelihood(
self,
inputs: List[str],
conts: List[str],
mask_length: Optional[List[int]] = None) -> List[float]:
"""Get loglikelihood scores given a list of inputs.
Args:
inputs (List[str]): A list of strings.
conts (List[str]): A list of strings: slices after the space.
NOT SUPPORT mask_length YET!
mask_length (Optional[List[int]]): A list of mask lengths. If
provided, the perplexity scores will be calculated with the
first mask_length[i] tokens masked out. It's okay to skip
its implementation if advanced features in PPLInfernecer is
not needed.
Returns:
List[float]: A list of loglikelihood scores.
"""
assert mask_length is None, 'Not support mask_length yet.'
if self.batch_padding and len(inputs) > 1:
assert self.tokenizer.pad_token
return self._get_loglikelihood(inputs, conts)
else:
return np.concatenate([
self._get_loglikelihood(inputs=[inputs[idx]],
conts=[conts[idx]])
for idx in range(len(inputs))
])
def _get_loglikelihood(self, inputs: str, conts: str) -> float:
"""Get loglikelihood scores given input string and continuation string.
Args:
inputs (str): string.
conts (str): strings: slices after the space.
Returns:
float: loglikelihood scores.
"""
input_tokenizer_out = self.tokenizer(inputs,
padding=True,
truncation=False,
return_length=True,
return_tensors='pt').to(
self.model.device)
input_ids = input_tokenizer_out['input_ids'][:, :self.max_seq_len]
input_length = input_tokenizer_out['length']
context_ids = [
self.tokenizer(inputs[i].replace(conts[i], ''),
padding=False,
truncation=True,
max_length=self.max_seq_len)['input_ids']
for i in range(len(inputs))
]
# forward
outputs = self.model(input_ids)['logits']
outputs = torch.nn.functional.log_softmax(outputs, dim=-1)
# calculate loglikelihood
answer = np.zeros(len(inputs))
for i in range(len(inputs)):
if self.tokenizer.padding_side == 'right':
cont_ids = input_ids[i, len(context_ids[i]):input_length[i]]
logits = outputs[i,
len(context_ids[i]) - 1:input_length[i] -
1, :] # noqa
else:
cont_ids = input_ids[i, len(context_ids[i]) - input_length[i]:]
logits = outputs[i,
len(context_ids[i]) - input_length[i] - 1:-1]
# Reducing the dimension will lead to a wrong outcome
logits_gather = torch.gather(
logits.unsqueeze(0), 2,
cont_ids.unsqueeze(0).unsqueeze(-1)) # [1, seq]
# Answer: sum the likelihood of each token in continuation
answer[i] = float(logits_gather.detach().cpu().sum())
return answer
def get_mink_percent(self, inputs: List[str], k: int = 20) -> List[float]:
"""https://swj0419.github.io/detect-pretrain.github.io/"""
if self.batch_padding and len(inputs) > 1:
assert self.tokenizer.pad_token
return self._get_mink_percent(inputs, k=k)
else:
return np.concatenate([
self._get_mink_percent(inputs=[text], k=k) for text in inputs
])
def _get_mink_percent(self, inputs: List[str], k: int = 20) -> List[float]:
outputs, inputs = self.get_logits(inputs)
shift_logits = outputs[:, :-1, :].contiguous().float()
shift_labels = inputs['tokens']['input_ids'][:, 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(
reduction='none', ignore_index=self.tokenizer.pad_token_id)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1)).view(shift_labels.size())
lens = (inputs['tokens']['input_ids'] !=
self.tokenizer.pad_token_id).sum(-1).cpu().numpy()
mink_percent = []
for nloss, nlen in zip(loss, lens):
nlen = int(nlen)
minklen = max(nlen * k // 100, 1)
nloss = torch.topk(loss[-nlen:], minklen, dim=-1)[0]
nloss = -nloss.float().mean().cpu().detach().numpy()
mink_percent.append(nloss)
return np.array(mink_percent)
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized strings.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
return len(self.tokenizer.encode(prompt))
@MODELS.register_module()
class HuggingFaceCausalLM(HuggingFace):
"""Model wrapper around HuggingFace CausalLM.
Args:
path (str): The name or path to HuggingFace's model.
hf_cache_dir: Set the cache dir to HF model cache dir. If None, it will
use the env variable HF_MODEL_HUB. Defaults to None.
max_seq_len (int): The maximum length of the input sequence. Defaults
to 2048.
tokenizer_path (str): The path to the tokenizer. Defaults to None.
tokenizer_kwargs (dict): Keyword arguments for the tokenizer.
Defaults to {}.
peft_path (str, optional): The name or path to the HuggingFace's PEFT
model. If None, the original model will not be converted to PEFT.
Defaults to None.
tokenizer_only (bool): If True, only the tokenizer will be initialized.
Defaults to False.
model_kwargs (dict): Keyword arguments for the model, used in loader.
Defaults to dict(device_map='auto').
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
batch_padding (bool): If False, inference with be performed in for-loop
without batch padding.
"""
def _load_model(self,
path: str,
model_kwargs: dict,
peft_path: Optional[str] = None):
from transformers import AutoModelForCausalLM
self._set_model_kwargs_torch_dtype(model_kwargs)
self.model = AutoModelForCausalLM.from_pretrained(path, **model_kwargs)
if peft_path is not None:
from peft import PeftModel
self.model = PeftModel.from_pretrained(self.model,
peft_path,
is_trainable=False)
self.model.eval()
self.model.generation_config.do_sample = False
class HuggingFaceChatGLM3(HuggingFace):
"""Model wrapper around HuggingFace's ChatGLM3. Details available in
`https://huggingface.co/THUDM/chatglm3-6b`.
model.chat() is used for inference.
"""
def __init__(self,
path: str,
hf_cache_dir: Optional[str] = None,
max_seq_len: int = 2048,
tokenizer_path: Optional[str] = None,
tokenizer_kwargs: dict = dict(),
peft_path: Optional[str] = None,
tokenizer_only: bool = False,
model_kwargs: dict = dict(device_map='auto'),
generation_kwargs: dict = dict(),
meta_template: Optional[Dict] = None,
extract_pred_after_decode: bool = False,
batch_padding: bool = False,
pad_token_id: Optional[int] = None,
mode: str = 'none',
num_extra_tokens: int = 50):
super().__init__(path=path,
hf_cache_dir=hf_cache_dir,
max_seq_len=max_seq_len,
tokenizer_path=tokenizer_path,
tokenizer_kwargs=tokenizer_kwargs,
peft_path=peft_path,
tokenizer_only=tokenizer_only,
generation_kwargs=generation_kwargs,
model_kwargs=model_kwargs,
meta_template=meta_template,
extract_pred_after_decode=extract_pred_after_decode,
batch_padding=batch_padding,
pad_token_id=pad_token_id,
mode=mode)
self.template_parser = APITemplateParser(meta_template)
# used to compensate for #tokens occupied by sth like system prompt
self.num_extra_tokens = num_extra_tokens
def generate(self,
inputs: List[str or PromptList],
max_out_len: int = 512,
skip_overlength=False,
**kwargs) -> str:
"""Generate response from input prompt.
Args:
inputs (list): input prompt
max_out_len (int): max output length
"""
generation_kwargs = kwargs.copy()
generation_kwargs.update(self.generation_kwargs)
responses = []
for _input in inputs:
assert isinstance(_input, (str, PromptList))
if isinstance(_input, str):
history = [{'role': 'user', 'content': _input}]
else:
history = []
for item in _input:
msg = {
'content': item['prompt'],
'role': {
'HUMAN': 'user',
'BOT': 'assistant',
'SYSTEM': 'system',
}[item['role'].upper()]
}
history.append(msg)
user_content = history[-1]['content']
history = history[:-1]
if skip_overlength:
# The model will report the following error
# if the sequence length is greater than the maximum length:
# "Input length of input_ids is {INPUT_IDS},
# but `max_length` is set to 8192.
# This can lead to unexpected behavior.
# You should consider increasing `max_new_tokens`."
# The following hardcode can fix this exception.
len_user_content = len(self.tokenizer.encode(user_content))
if len_user_content > 8192:
responses.append('')
continue
response, history = self.model.chat(self.tokenizer,
user_content,
history=history,
max_new_tokens=max_out_len,
**generation_kwargs)
# response will be dict sometime
if isinstance(response, dict):
response = response.get('content', '')
responses.append(response)
return responses
def get_token_len(self, prompt: str) -> int:
return len(self.tokenizer.encode(prompt)) + self.num_extra_tokens
|