File size: 4,763 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import logging
import threading
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union

from opencompass.models.base import BaseModel, LMTemplateParser
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList

PromptType = Union[PromptList, str]


def valid_str(string, coding='utf-8'):
    """decode text according to its encoding type."""
    invalid_chars = [b'\xef\xbf\xbd']
    bstr = bytes(string, coding)
    for invalid_char in invalid_chars:
        bstr = bstr.replace(invalid_char, b'')
    ret = bstr.decode(encoding=coding, errors='ignore')
    return ret


class TurboMindTisModel(BaseModel):
    """Model wrapper for TurboMind Triton Inference Server gRPC API.

    Args:
        path (str): The name of OpenAI's model.
        tis_addr (str): The address (ip:port format) of turbomind's
            triton inference server
        max_seq_len (int): The maximum allowed sequence length of a model.
            Note that the length of prompt + generated tokens shall not exceed
            this value. Defaults to 2048.
        meta_template (Dict, optional): The model's meta prompt
            template if needed, in case the requirement of injecting or
            wrapping of any meta instructions.
    """

    is_api: bool = True

    def __init__(
        self,
        path: str,
        tis_addr: str = '0.0.0.0:33337',
        max_seq_len: int = 2048,
        meta_template: Optional[Dict] = None,
    ):
        super().__init__(path=path,
                         max_seq_len=max_seq_len,
                         meta_template=meta_template)
        self.logger = get_logger()
        self.template_parser = LMTemplateParser(meta_template)
        self.eos_token_id = None
        if meta_template and 'eos_token_id' in meta_template:
            self.eos_token_id = meta_template['eos_token_id']
        self.tis_addr = tis_addr

    def generate(
        self,
        inputs: List[str or PromptList],
        max_out_len: int = 512,
        temperature: float = 1.0,
    ) -> List[str]:
        """Generate results given a list of inputs.

        Args:
            inputs (List[str or PromptList]): A list of strings or PromptDicts.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.
            temperature (float): What sampling temperature to use,
                between 0 and 2. Higher values like 0.8 will make the output
                more random, while lower values like 0.2 will make it more
                focused and deterministic. Defaults to 0.7.

        Returns:
            List[str]: A list of generated strings.
        """

        with ThreadPoolExecutor() as executor:
            results = list(
                executor.map(self._generate, inputs,
                             [max_out_len] * len(inputs),
                             [temperature] * len(inputs)))
        return results

    def wait(self):
        """Wait till the next query can be sent.

        Applicable in both single-thread and multi-thread environments.
        """
        return self.token_bucket.get_token()

    def _generate(self, prompt: str or PromptList, max_out_len: int,
                  temperature: float) -> str:
        """Generate results given a list of inputs.

        Args:
            prompt (str or PromptList): A string or PromptDict.
                The PromptDict should be organized in OpenCompass'
                API format.
            max_out_len (int): The maximum length of the output.
            temperature (float): What sampling temperature to use,
                between 0 and 2. Higher values like 0.8 will make the output
                more random, while lower values like 0.2 will make it more
                focused and deterministic.

        Returns:
            str: The generated string.
        """
        assert type(
            prompt) is str, 'We only support string for TurboMind RPC API'

        from lmdeploy.serve.turbomind.chatbot import Chatbot
        chatbot = Chatbot(self.tis_addr,
                          temperature=temperature,
                          capability='completion',
                          top_k=1,
                          log_level=logging.ERROR)

        for status, text, n_token in chatbot.stream_infer(
                session_id=threading.currentThread().ident,
                prompt=prompt,
                request_output_len=max_out_len,
                sequence_start=True,
                sequence_end=True):
            continue
        response = valid_str(text)
        response = response.replace('<eoa>', '')
        return response