File size: 11,670 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""Simple Dataset Reader."""
import random
from typing import Dict, List, Optional, Union
import torch
from datasets import Dataset, DatasetDict
from transformers import AutoTokenizer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.registry import ICL_DATASET_READERS
from opencompass.utils.types import (_check_dataset, _check_str,
_check_type_list)
@ICL_DATASET_READERS.register_module()
class DatasetReader:
"""In-conext Learning Dataset Reader Class Generate an DatasetReader
instance through 'dataset'.
Attributes:
dataset (:obj:`Dataset` or :obj:`DatasetDict`): The dataset to be read.
input_columns (:obj:`List[str]` or :obj:`str`): A list of column names
(a string of column name) in the dataset that represent(s) the
input field.
output_column (:obj:`str`): A column name in the dataset that
represents the prediction field.
input_template (:obj:`PromptTemplate`, optional): An instance of the
:obj:`PromptTemplate` class, used to format the input field
content during the retrieval process. (in some retrieval methods)
output_template (:obj:`PromptTemplate`, optional): An instance of the
:obj:`PromptTemplate` class, used to format the output field
content during the retrieval process. (in some learnable retrieval
methods)
train_split (str): The name of the training split. Defaults to 'train'.
train_range (int or float or str, optional): The size of the partial
training dataset to load.
If None, the entire training dataset will be loaded.
If int or float, the random partial dataset will be loaded with the
specified size.
If str, the partial dataset will be loaded with the
specified index list (e.g. "[:100]" for the first 100 examples,
"[100:200]" for the second 100 examples, etc.). Defaults to None.
test_split (str): The name of the test split. Defaults to 'test'.
test_range (int or float or str, optional): The size of the partial
test dataset to load.
If None, the entire test dataset will be loaded.
If int or float, the random partial dataset will be loaded with the
specified size.
If str, the partial dataset will be loaded with the
specified index list (e.g. "[:100]" for the first 100 examples,
"[100:200]" for the second 100 examples, etc.). Defaults to None.
"""
dataset = None
input_template = None
output_template = None
def __init__(self,
dataset: Union[Dataset, DatasetDict, str],
input_columns: Union[List[str], str],
output_column: Optional[str],
input_template: Optional[PromptTemplate] = None,
output_template: Optional[PromptTemplate] = None,
train_split: str = 'train',
train_range: Optional[Union[int, float, str]] = None,
test_split: str = 'test',
test_range: Optional[Union[int, float, str]] = None) -> None:
self.input_columns = _check_type_list(input_columns, [List, str])
if isinstance(self.input_columns, str):
self.input_columns = self.input_columns.split()
self.output_column = None
if output_column:
self.output_column = _check_str(output_column)
train_range = _check_type_list(train_range, [None, int, float, str])
test_range = _check_type_list(test_range, [None, int, float, str])
if input_template is not None:
self.input_template = PromptTemplate._check_prompt_template(
input_template)
if output_template is not None:
self.output_template = PromptTemplate._check_prompt_template(
output_template)
self.dataset = _check_dataset(dataset)
if isinstance(self.dataset, Dataset):
self.dataset = DatasetDict({
'train': self.dataset,
'test': self.dataset
})
# Normalize the dataset so that it has only "train" and "test" splits.
for origin_split, mapped_split, split_range in [[
train_split, 'train', train_range
], [test_split, 'test', test_range]]:
self.dataset[mapped_split] = load_partial_dataset(
self.dataset[origin_split], size=split_range)
def generate_input_field_prompt(self, entry: Dict) -> str:
"""Generate a prompt for the input field based on the provided
:obj:`entry` data.
Args:
entry (:obj:`Dict`): A piece of data to be used for generating the
prompt.
Returns:
:obj:`str`: The generated prompt.
"""
prompt = None
if self.input_template is None:
prompt = ' '.join([str(entry[ctx]) for ctx in self.input_columns])
else:
prompt = self.input_template.generate_item(entry)
return prompt
def generate_input_field_corpus(self,
dataset: Union[Dataset, DatasetDict],
split: Optional[str] = None) -> List[str]:
"""Generate corpus for input field.
Args:
dataset (:obj:`Dataset` or :obj:`DatasetDict`): A
:obj:`datasets.Dataset` or :obj:`datasets.DatasetDict`
instance.
split (:obj:`str`, optional): The split of the dataset to use. If
:obj:`None`, the entire dataset will be used. Defaults to
``None``.
Returns:
:obj:`List[str]`: A list of generated input field prompts.
"""
if split is not None:
dataset = dataset[split]
corpus = []
for entry in dataset:
corpus.append(self.generate_input_field_prompt(entry))
return corpus
def generate_output_field_prompt(self, entry: Dict) -> str:
"""Generate a prompt for the output field based on the provided
:obj:`entry` data.
Args:
entry (:obj:`Dict`): A piece of data to be used for generating the
prompt.
Returns:
:obj:`str`: The generated prompt.
"""
prompt = None
if self.output_template is None:
prompt = str(entry[self.output_column])
else:
prompt = self.output_template.generate_item(entry)
return prompt
def generate_output_field_corpus(self,
dataset: Union[Dataset, DatasetDict],
split: Optional[str] = None) -> List[str]:
"""Generate corpus for output field.
Args:
dataset (:obj:`Dataset` or :obj:`DatasetDict`): A
:obj:`datasets.Dataset` or :obj:`datasets.DatasetDict`
instance.
split (:obj:`str`, optional): The split of the dataset to use.
If :obj:`None`, the entire dataset will be used. Defaults to
``None``.
Returns:
:obj:`List[str]`: A list of generated output field prompts.
"""
if split is not None:
dataset = dataset[split]
corpus = []
for entry in dataset:
corpus.append(self.generate_output_field_prompt(entry))
return corpus
def generate_input_output_field_prompt(self, entry: Dict) -> str:
"""Generate a prompt for the input-output field based on the
provided:obj:`entry` data.
Args:
entry (:obj:`Dict`): A piece of data to be used for generating the
prompt.
Returns:
:obj:`str`: The generated prompt.
"""
prompt = None
if self.input_output_template is None:
prompt = ' '.join([entry[ctx] for ctx in self.input_columns] +
[str(entry[self.output_column])])
else:
prompt = self.input_output_template.generate_item(entry)
return prompt
def _check_dataset_reader(obj) -> 'DatasetReader':
if isinstance(obj, DatasetReader):
return obj
else:
raise TypeError(f'Expected a DatasetReader object, but got {obj}')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def __repr__(self):
return (f'DatasetReader({{\n dataset: {self.dataset},'
f'\n input_columns: {self.input_columns},\n'
f' output_columns: {self.output_column}\n}})')
def load_partial_dataset(
dataset: Dataset,
size: Optional[Union[int, float, str]] = None) -> Dataset:
"""Load a partial dataset.
Args:
dataset (Dataset): A :obj:`datasets.Dataset` instance.
size (int or float or (int, int), optional): The size of the partial
dataset to load. If None, the entire dataset will be loaded.
If int or float, the random partial dataset will be loaded with the
specified size. If str, the partial dataset will be loaded with the
specified index list (e.g. "[:100]" for the first 100 examples,
"[100:200]" for the second 100 examples, etc.). Defaults to None.
"""
total_size = len(dataset)
index_list = list(range(total_size))
if isinstance(size, (int, float)):
if size >= total_size or size <= 0:
return dataset
if size > 0 and size < 1:
size = int(size * total_size)
rand = random.Random(x=size)
rand.shuffle(index_list)
dataset = dataset.select(index_list[:size])
elif isinstance(size, str):
dataset = dataset.select(eval(f'index_list{size}'))
return dataset
class DatasetEncoder(torch.utils.data.Dataset):
def __init__(self,
datalist: List,
model_name=None,
tokenizer=None) -> None:
self.datalist = datalist
if model_name is None and tokenizer is None:
raise ValueError('model_name and tokenizer could not both be None')
if tokenizer is not None:
self.tokenizer = tokenizer
else:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.tokenizer.padding_side = 'left'
self.encode_dataset = []
self.init_dataset()
self.datalist_length = len(self.encode_dataset)
def init_dataset(self):
for idx, data in enumerate(self.datalist):
tokenized_data = self.tokenizer.encode_plus(data,
truncation=True,
return_tensors='pt',
verbose=False)
self.encode_dataset.append({
'input_ids':
tokenized_data.input_ids[0],
'attention_mask':
tokenized_data.attention_mask[0],
'metadata': {
'id': idx,
'len': len(tokenized_data.input_ids[0]),
'text': data
}
})
def __len__(self):
return self.datalist_length
def __getitem__(self, idx):
return self.encode_dataset[idx]
|