File size: 7,310 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
"""PPL Inferencer."""
import os
from typing import List, Optional
import mmengine
import torch
from tqdm import tqdm
from opencompass.models.base import BaseModel
from opencompass.registry import ICL_INFERENCERS
from ..icl_prompt_template import PromptTemplate
from ..icl_retriever import BaseRetriever
from ..utils import get_logger
from .icl_base_inferencer import BaseInferencer, dump_results_dict
logger = get_logger(__name__)
@ICL_INFERENCERS.register_module()
class PPLOnlyInferencer(BaseInferencer):
"""PPLOnlyInferencer class to calculate PPL and PPL only, no choice is
made. This Inferencer is usually used along with AveragePPLEvaluator.
Attributes:
model (:obj:`BaseModel`, optional): The module to inference.
max_seq_len (:obj:`int`): Maximum number of tokenized words allowed by
the LM.
batch_size (:obj:`int`, optional): Batch size for the :obj:`DataLoader`
output_json_filepath (:obj:`str`, optional): File path for output
`JSON` file.
output_json_filename (:obj:`str`, optional): File name for output
`JSON` file.
save_every (:obj:`int`, optional): Save intermediate results every
"""
def __init__(
self,
model: BaseModel,
max_seq_len: Optional[int] = None,
batch_size: Optional[int] = 1,
output_json_filepath: Optional[str] = './icl_inference_output',
output_json_filename: Optional[str] = 'predictions',
save_every: Optional[int] = 1,
**kwargs) -> None:
super().__init__(
model=model,
max_seq_len=max_seq_len,
batch_size=batch_size,
output_json_filename=output_json_filename,
output_json_filepath=output_json_filepath,
**kwargs,
)
self.save_every = save_every
def inference(self,
retriever: BaseRetriever,
ice_template: Optional[PromptTemplate] = None,
prompt_template: Optional[PromptTemplate] = None,
output_json_filepath: Optional[str] = None,
output_json_filename: Optional[str] = None) -> List:
# 1. Preparation for output logs
output_handler = PPLOnlyInferencerOutputHandler()
if output_json_filepath is None:
output_json_filepath = self.output_json_filepath
if output_json_filename is None:
output_json_filename = self.output_json_filename
# 2. Get results of retrieval process
ice_idx_list = retriever.retrieve()
# 3. Generate prompts for testing input
prompt_list = self.get_generation_prompt_list_from_retriever_indices(
ice_idx_list,
retriever,
max_seq_len=self.max_seq_len,
ice_template=ice_template,
prompt_template=prompt_template)
# 3.1 Fetch and zip prompt & gold answer if output column exists
ds_reader = retriever.dataset_reader
assert ds_reader.output_column is None, (
'PPLOnlyInferencer supports `output_column=None` only.')
# Create tmp json file for saving intermediate results and future
# resuming
index = 0
tmp_json_filepath = os.path.join(output_json_filepath,
'tmp_' + output_json_filename)
if os.path.exists(tmp_json_filepath):
# TODO: move resume to output handler
try:
tmp_result_dict = mmengine.load(tmp_json_filepath)
except Exception:
pass
else:
output_handler.results_dict = tmp_result_dict
index = len(tmp_result_dict)
# 4. Wrap prompts with Dataloader
dataloader = self.get_dataloader(prompt_list[index:], self.batch_size)
# 5. Inference for prompts in each batch
logger.info('Starting inference process...')
for datum in tqdm(dataloader, disable=not self.is_main_process):
entry = datum
# 5-1. Inference with local model
with torch.no_grad():
ppls = self.model.get_ppl_from_template(entry).tolist()
parsed_entries = self.model.parse_template(entry, mode='gen')
# 5-3. Save current output
for prompt, ppl, in zip(parsed_entries, ppls):
output_handler.save_results(prompt, ppl, index)
index = index + 1
# 5-4. Save intermediate results
if (self.save_every is not None and index % self.save_every == 0
and self.is_main_process):
output_handler.write_to_json(output_json_filepath,
'tmp_' + output_json_filename)
# 6. Output
if self.is_main_process:
os.makedirs(output_json_filepath, exist_ok=True)
output_handler.write_to_json(output_json_filepath,
output_json_filename)
if os.path.exists(tmp_json_filepath):
os.remove(tmp_json_filepath)
return [
sample['ppl'] for sample in output_handler.results_dict.values()
]
def get_generation_prompt_list_from_retriever_indices(
self,
ice_idx_list: List[List[int]],
retriever: BaseRetriever,
max_seq_len: Optional[int] = None,
ice_template: Optional[PromptTemplate] = None,
prompt_template: Optional[PromptTemplate] = None):
prompt_list = []
for idx, ice_idx in enumerate(ice_idx_list):
ice = retriever.generate_ice(ice_idx, ice_template=ice_template)
prompt = retriever.generate_prompt_for_generate_task(
idx,
ice,
ice_template=ice_template,
prompt_template=prompt_template)
if max_seq_len is not None:
prompt_token_num = self.model.get_token_len_from_template(
prompt, mode='gen')
while len(ice_idx) > 0 and prompt_token_num > max_seq_len:
ice_idx = ice_idx[:-1]
ice = retriever.generate_ice(ice_idx,
ice_template=ice_template)
prompt = retriever.generate_prompt_for_generate_task(
idx,
ice,
ice_template=ice_template,
prompt_template=prompt_template)
prompt_token_num = self.model.get_token_len_from_template(
prompt, mode='gen')
prompt_list.append(prompt)
return prompt_list
class PPLOnlyInferencerOutputHandler:
origin_prompt_dict = {}
output_dict = {}
results_dict = {}
def __init__(self) -> None:
self.results_dict = {}
def write_to_json(self, save_dir: str, filename: str):
"""Dump the result to a json file."""
dump_results_dict(self.results_dict, os.path.join(save_dir, filename))
def save_results(self, origin_prompt, ppl, idx):
self.results_dict[str(idx)] = {
'origin_prompt': origin_prompt,
'ppl': ppl,
}
|