File size: 15,291 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# flake8: noqa
# yapf: disable
import os.path as osp
from collections import defaultdict
from typing import List, Optional
import mmengine
import numpy as np
from mmengine import ConfigDict
from rich import print
from rich.table import Table
from opencompass.utils import (dataset_abbr_from_cfg, get_infer_output_path,
get_logger, model_abbr_from_cfg)
from opencompass.utils.prompt import get_prompt_hash
METRIC_WHITELIST = ['score', 'auc_score', 'accuracy', 'humaneval_pass@1', 'rouge1', 'avg_toxicity_score', 'bleurt_diff', 'matthews_correlation', 'truth']
METRIC_BLACKLIST = ['bp', 'sys_len', 'ref_len']
META_COL_COUNT = 4
EPS = 1e-6
def bold(text):
return f'[bold]{text}[/bold]'
def green_bold(text):
return f'[green][bold]{text}[/bold][/green]'
def format_float(v):
return f'{v:.2f}'
def to_float(text: str):
try:
return float(text)
except ValueError:
return 0
def is_section_row(row: List[str]) -> bool:
# ['ceval', '-', '-', '-', '-'],
return row[-1] == '-' and row[0][0] == '-'
def average_rows(name, rows: List[List[str]]) -> List[str]:
# name: col=0 的名字
new_row = ['-'] * len(rows[0])
new_row[0] = bold(name)
all_accs = defaultdict(list)
for row in rows:
for i, acc in enumerate(row[META_COL_COUNT:]):
all_accs[i].append(to_float(acc))
for i, accs in enumerate(all_accs.values()):
new_row[META_COL_COUNT + i] = format_float(np.mean(accs))
return new_row
def create_section_row(row_i: int, row: List[str], table) -> List[str]:
section_name = bold('[' + row[0].replace('-', '').strip() + ']')
# TODO: 区分 acc,rouge1,score 等
section_rows = []
for next_row in table[row_i + 1 :]:
if is_section_row(next_row):
break
section_rows.append(next_row)
return average_rows(section_name, section_rows)
def create_win_row(rows: List[List[str]]) -> List[str]:
win_count = defaultdict(int)
for row in rows:
all_scores = [to_float(_) for _ in row[META_COL_COUNT:]]
best_indeice = [i for i, s in enumerate(all_scores) if s > np.max(all_scores) - EPS]
for best_index in best_indeice:
win_count[best_index] += 1
new_row = ['-'] * len(rows[0])
new_row[0] = bold('Win Count')
for i, count in win_count.items():
new_row[META_COL_COUNT + i] = str(count)
return new_row
def highlight(row: List[str], meta_col_count: int = META_COL_COUNT) -> List[str]:
new_row = [_ for _ in row]
all_scores = [to_float(_) for _ in row[meta_col_count:]]
best_indeice = [i + meta_col_count for i, s in enumerate(all_scores) if s > np.max(all_scores) - EPS]
for best_index in best_indeice:
new_row[best_index] = green_bold(row[best_index])
return new_row
class MultiModelSummarizer:
"""MultiModel.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
dataset_abbrs (list[str], optional): Dataset abbreviations to be
listed in the summary.
summary_groups (list): The dataset groups whose results need to be
averaged out. For example, mmlu. Each item it a dict with
'name' (str) and 'subsets' (list of dataset abbrs), and optionally
'weights' if weighted average is needed.
prompt_db: A deprecated field.
"""
def __init__(self, config: ConfigDict, dataset_abbrs: Optional[List[str]] = None, summary_groups: List = [], prompt_db = None) -> None:
self.tasks = []
self.cfg = config
self.logger = get_logger()
self.summary_groups = summary_groups
self.dataset_abbrs = dataset_abbrs
if prompt_db:
self.logger.warning('prompt_db is deprecated and no longer used. '
'Please remove it from your config.')
self.models_summary_group_metrics = {}
self.table = self.load()
def load( self ): # noqa
model_cfgs = self.cfg['models']
dataset_cfgs = self.cfg['datasets']
work_dir = self.cfg['work_dir']
# pick up results
raw_results = {}
parsed_results = {}
dataset_metrics = {}
model_abbrs = [model_abbr_from_cfg(model) for model in model_cfgs]
for model in model_cfgs:
model_abbr = model_abbr_from_cfg(model)
parsed_results[model_abbr] = {}
raw_results[model_abbr] = {}
for dataset in dataset_cfgs:
dataset_abbr = dataset_abbr_from_cfg(dataset)
filepath = get_infer_output_path(model, dataset, osp.join(work_dir, 'results'))
if not osp.exists(filepath):
continue
result = mmengine.load(filepath)
raw_results[model_abbr][dataset_abbr] = result
if 'error' in result:
self.logger.debug(f'error in {model_abbr} {dataset_abbr} {result["error"]}')
continue
else:
parsed_results[model_abbr][dataset_abbr] = []
dataset_metrics[dataset_abbr] = []
for metric, score in result.items():
if metric not in METRIC_BLACKLIST and isinstance(score, (int, float)):
parsed_results[model_abbr][dataset_abbr].append(score)
dataset_metrics[dataset_abbr].append(metric)
else:
continue
if len(parsed_results[model_abbr][dataset_abbr]) == 0:
self.logger.warning(f'unknown result format: {result}, continue')
del parsed_results[model_abbr][dataset_abbr]
del dataset_metrics[dataset_abbr]
continue
indice = sorted(
list(range(len(dataset_metrics[dataset_abbr]))),
key=lambda i: (
METRIC_WHITELIST.index(dataset_metrics[dataset_abbr][i])
if dataset_metrics[dataset_abbr][i] in METRIC_WHITELIST
else len(METRIC_WHITELIST)
)
)
parsed_results[model_abbr][dataset_abbr] = [parsed_results[model_abbr][dataset_abbr][i] for i in indice]
dataset_metrics[dataset_abbr] = [dataset_metrics[dataset_abbr][i] for i in indice]
# parse eval mode
dataset_eval_mode = {}
for dataset in dataset_cfgs:
inferencer = dataset.get('infer_cfg', {}).get('inferencer', {}).get('type', '')
inferencer = inferencer if isinstance(inferencer, str) else inferencer.__name__
dataset_abbr = dataset_abbr_from_cfg(dataset)
if 'GenInferencer' in inferencer:
dataset_eval_mode[dataset_abbr] = 'gen'
elif 'PPLInferencer' in inferencer:
dataset_eval_mode[dataset_abbr] = 'ppl'
else:
dataset_eval_mode[dataset_abbr] = 'unknown'
self.logger.warning(f'unknown inferencer: {inferencer} - {dataset_abbr}')
# calculate group metrics
summary_groups = self.summary_groups
summary_group_metrics = {}
for sg in summary_groups:
for model_abbr in model_abbrs:
results = {}
eval_modes = []
for dataset_abbr in sg['subsets']:
if dataset_abbr in parsed_results[model_abbr]:
results[dataset_abbr] = parsed_results[model_abbr][dataset_abbr][0]
eval_modes.append(dataset_eval_mode.get(dataset_abbr, 'unknown'))
summary_group_metrics[sg['name']] = results
if len(results) == len(sg['subsets']):
if 'weights' in sg:
numerator = sum(results[k] * sg['weights'][k] for k in sg['weights'])
denominator = sum(sg['weights'].values())
metric = 'weighted_average'
else:
numerator = sum(results[k] for k in results)
denominator = len(results)
metric = 'naive_average'
results[metric] = numerator / denominator
eval_modes = list(set(eval_modes))
eval_mode = eval_modes[0] if len(eval_modes) == 1 else 'mixed'
# add to global results
raw_results[model_abbr][sg['name']] = results
parsed_results[model_abbr][sg['name']] = [numerator / denominator]
dataset_metrics[sg['name']] = [metric]
dataset_eval_mode[sg['name']] = eval_mode
elif len(results) == 0:
continue
else:
raw_results[model_abbr][sg['name']] = {'error': 'missing datasets: {}'.format(set(sg['subsets']) - set(results.keys()))}
prompt_version = {dataset_abbr_from_cfg(d): get_prompt_hash(d)[:6] for d in dataset_cfgs}
# format table
summarizer_dataset_abbrs = []
if self.dataset_abbrs is None:
for dataset in dataset_cfgs:
dataset_abbr = dataset_abbr_from_cfg(dataset)
if dataset_abbr in dataset_metrics:
for metric in dataset_metrics[dataset_abbr]:
summarizer_dataset_abbrs.append((dataset_abbr, metric))
else:
summarizer_dataset_abbrs.append((dataset_abbr, None))
for dataset_abbr in dataset_metrics:
for metric in dataset_metrics[dataset_abbr]:
if (dataset_abbr, metric) not in summarizer_dataset_abbrs:
summarizer_dataset_abbrs.append((dataset_abbr, metric))
else:
for item in self.dataset_abbrs:
if isinstance(item, str):
summarizer_dataset_abbrs.append((item, None))
elif isinstance(item, (list, tuple)):
summarizer_dataset_abbrs.append((item[0], item[1]))
table = []
header = ['dataset', 'version', 'metric', 'mode'] + model_abbrs
table.append(header)
for dataset_abbr, metric in summarizer_dataset_abbrs:
if dataset_abbr not in dataset_metrics:
table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(model_abbrs))
continue
if metric is None:
index = 0
metric = dataset_metrics[dataset_abbr][0]
elif metric in dataset_metrics[dataset_abbr]:
index = dataset_metrics[dataset_abbr].index(metric)
else:
table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(model_abbrs))
continue
row = [dataset_abbr, prompt_version.get(dataset_abbr, '-'), metric, dataset_eval_mode.get(dataset_abbr, '-')]
for model_abbr in model_abbrs:
if dataset_abbr in parsed_results[model_abbr]:
row.append('{:.02f}'.format(parsed_results[model_abbr][dataset_abbr][index]))
else:
row.append('-')
table.append(row)
self.models_summary_group_metrics[table[0][-1]] = summary_group_metrics
return table
def merge(self, summarizer: 'MultiModelSummarizer'):
assert len(self.table) == len(summarizer.table)
for row_i, row in enumerate(summarizer.table):
base_row = self.table[row_i]
if base_row[:3] != row[:3]:
self.logger.warning(f'cannot merge tables with different headers: {base_row} vs {row}')
base_row.extend(row[META_COL_COUNT:])
new_model_name = summarizer.table[0][-1]
assert new_model_name not in self.models_summary_group_metrics
self.models_summary_group_metrics[new_model_name] = summarizer.models_summary_group_metrics[new_model_name]
def summarize(self):
"""
Format in self.table
[
['dataset', 'version', 'metric', 'mode', 'model_name'],
['--------- 考试 Exam ---------', '-', '-', '-', '-'],
['ARC-c', '1e0de5', 'accuracy', 'gen', '79.32'],
['ARC-e', '1e0de5', 'accuracy', 'gen', '85.36'],
['--------- 语言 Language ---------', '-', '-', '-', '-'],
['WiC', 'd06864', 'accuracy', 'gen', '55.64'],
['chid-dev', '211ee7', 'accuracy', 'gen', '52.97'],
['--------- 知识 Knowledge ---------', '-', '-', '-', '-'],
['BoolQ', '883d50', 'accuracy', 'gen', '86.06'],
['--------- 理解 Understanding ---------', '-', '-', '-', '-'],
['C3', '8c358f', 'accuracy', 'gen', '88.33'],
['race-middle', '9a54b6', 'accuracy', 'gen', '90.32'],
['--------- 推理 Reasoning ---------', '-', '-', '-', '-'],
['cmnli', '1abf97', 'accuracy', 'gen', '38.26'],
['ocnli', 'c4cb6c', 'accuracy', 'gen', '32.92'],
]
"""
table = Table()
for i, col_name in enumerate(self.table[0]):
table.add_column(col_name, overflow='fold', max_width=20 if i >= META_COL_COUNT else None)
section_rows = []
all_rows = []
for row_i, row in enumerate(self.table):
if row_i == 0:
continue
if is_section_row(row):
table.add_section()
new_row = create_section_row(row_i, row, self.table)
section_rows.append(new_row)
else:
new_row = row
all_rows.append(new_row)
table.add_row(*highlight(new_row))
if section_rows:
table.add_section()
average_row = average_rows('Naive Average', section_rows)
average_row = highlight(average_row)
table.add_row(*average_row)
table.add_section()
table.add_row(*highlight(create_win_row(all_rows)))
print(table)
def show_group(self, group: str):
table = Table(title=group)
table.add_column('Dataset', overflow='fold')
# summary_group_metrics 数据结构 dict[group_name][sub_group_name] = 73
group_metrics = None
for model_name, summary_group_metrics in self.models_summary_group_metrics.items():
if group not in summary_group_metrics:
self.logger.warning(f'group {group} not found in {model_name}')
return
table.add_column(model_name, overflow='fold')
group_metrics = summary_group_metrics[group]
for subset_name in group_metrics.keys():
if subset_name == 'naive_average':
continue
row = [subset_name]
for summary_group_metrics in self.models_summary_group_metrics.values():
metric = summary_group_metrics[group][subset_name]
row.append(format_float(metric))
table.add_row(*highlight(row, meta_col_count=1))
print(table)
|