File size: 28,602 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
# flake8: noqa
# yapf: disable
import functools
import getpass
import math
import os
import os.path as osp
from datetime import datetime
from typing import Any, Dict, List, Optional
import matplotlib.pyplot as plt
import mmengine
import numpy as np
import pandas as pd
import seaborn as sns
import tabulate
from matplotlib.colors import LinearSegmentedColormap
from mmengine import ConfigDict
from tqdm import tqdm
from opencompass.summarizers.default import (
METRIC_BLACKLIST, METRIC_WHITELIST, DefaultSummarizer,
model_abbr_from_cfg_used_in_summarizer)
from opencompass.utils import (LarkReporter, dataset_abbr_from_cfg,
get_infer_output_path, get_logger,
model_abbr_from_cfg)
from opencompass.utils.prompt import get_prompt_hash
def read_after_specific_line_except_last(file_name, keyword, offset):
with open(file_name, 'r', encoding='utf-8') as file:
lines = file.readlines()
for index, line in enumerate(lines):
if keyword in line:
start_index = index + offset + 1
break
else:
return ''
return ''.join(lines[start_index:-1])
def create_model_dataframe(nested_dict, model_name, dataset_abbr, parallel=False):
if model_name not in nested_dict:
print(f'Model {model_name} not found in the provided data.')
return pd.DataFrame()
model_data = nested_dict[model_name]
data = []
for key, value in model_data.items():
if parallel:
if dataset_abbr in key:
new_key_base = key.replace(dataset_abbr, '').strip('_')
for depth_key, score in value.items():
new_key = f'{new_key_base}{depth_key}'
if 'average_score' not in new_key:
data.append([new_key, score])
else:
if dataset_abbr in key:
score = value.get('score', None)
new_key = key.replace(dataset_abbr, '').strip('_')
data.append([new_key, score])
df = pd.DataFrame(data, columns=['dataset', model_name])
return df
def parse_model_scores(text):
lines = text.split('\n')
result_dict = {}
current_model = None
for line in lines:
if line.startswith('Model:'):
current_model = line.split('Model:')[1].strip()
result_dict[current_model] = {}
elif current_model and ':' in line:
dataset, score_str = line.split(':', 1)
score_dict = eval(score_str.strip())
result_dict[current_model][dataset] = score_dict
return result_dict
def visualize(df_raw, save_path: str,model_name: str ,dataset_type:str):
df = df_raw.copy()
df['Context Length'] = df['dataset'].apply(
lambda x: int(x.split('Length')[1].split('Depth')[0]))
df['Document Depth'] = df['dataset'].apply(
lambda x: float(x.split('Depth')[1].split('_')[0]))
model_columns = [
col for col in df.columns
if col not in ['Context Length', 'Document Depth']
]
for model_name in model_columns[1:]:
model_df = df[['Document Depth', 'Context Length',
model_name]].copy()
model_df.rename(columns={model_name: 'Score'}, inplace=True)
# Create pivot table
pivot_table = pd.pivot_table(model_df,
values='Score',
index=['Document Depth'],
columns=['Context Length'],
aggfunc='mean')
# Calculate mean scores
mean_scores = pivot_table.mean().values
# Calculate overall score
overall_score = mean_scores.mean()
# Create heatmap and line plot
plt.figure(figsize=(15.5, 8))
ax = plt.gca()
cmap = LinearSegmentedColormap.from_list(
'custom_cmap', ['#F0496E', '#EBB839', '#0CD79F'])
# Draw heatmap
sns.heatmap(pivot_table,
cmap=cmap,
ax=ax,
cbar_kws={'label': 'Score'},
vmin=0,
vmax=100)
# Set line plot data
x_data = [i + 0.5 for i in range(len(mean_scores))]
y_data = mean_scores
# Create twin axis for line plot
ax2 = ax.twinx()
# Draw line plot
ax2.plot(x_data,
y_data,
color='white',
marker='o',
linestyle='-',
linewidth=2,
markersize=8,
label='Average Depth Score')
# Set y-axis range
ax2.set_ylim(0, 100)
# Hide original y-axis ticks and labels
ax2.set_yticklabels([])
ax2.set_yticks([])
# Add legend
ax2.legend(loc='upper left')
# Set chart title and labels
ax.set_title(f'{model_name} {dataset_type} Context '
'Performance\nFact Retrieval Across '
'Context Lengths ("Needle In A Haystack")')
ax.set_xlabel('Token Limit')
ax.set_ylabel('Depth Percent')
ax.set_xticklabels(pivot_table.columns.values, rotation=45)
ax.set_yticklabels(pivot_table.index.values, rotation=0)
# Add overall score as a subtitle
plt.text(0.5,
-0.13, f'Overall Score for {model_name}: '
f'{overall_score:.2f}',
ha='center',
va='center',
transform=ax.transAxes,
fontsize=13)
plt.tight_layout()
plt.subplots_adjust(right=1)
plt.draw()
plt.savefig(save_path)
print(f'Saved :{save_path}')
plt.close() # Close figure to prevent memory leaks
return overall_score
def save_results_to_plots(txt_results_save_path):
content = read_after_specific_line_except_last(txt_results_save_path, 'raw format', 2)
parsed_data = parse_model_scores(content)
model_names = get_dict_model_names(parsed_data)
numbers = [2, 3, 4, 5]
languages = ['en', 'zh']
size_exists = []
sizes_origin = ['_4k', '_8k', '_32k', '_128k', '_200k']
for size in sizes_origin:
if size in content:
size_exists.append(size)
multi_dataset_abbrs = [f'{num}needle_{lang}{size}' for num in numbers for lang in languages for size in size_exists]
origin_dataset_abbrs = [f'origin_{lang}{size}' for lang in languages for size in size_exists]
parallel_dataset_abbrs = [f'parallel_{lang}{size}' for lang in languages for size in size_exists]
dataset_abbrs = multi_dataset_abbrs + origin_dataset_abbrs + \
parallel_dataset_abbrs
base_path = os.path.dirname(txt_results_save_path)
plot_path = os.path.join(base_path, 'plots')
model_scores = {}
for model_name in tqdm(model_names):
model_datasets_scores = {} # Dictionary to store scores for each dataset for the current model
for dataset_abbr in dataset_abbrs:
parallel_flag = 'parallel' in dataset_abbr
# Create a directory for each dataset_abbr
folder_path = os.path.join(plot_path, dataset_abbr)
ensure_directory(folder_path)
# Construct the full path to save the image
save_path = os.path.join(folder_path, f'{model_name}.png')
# Create DataFrame for the model and dataset
df = create_model_dataframe(parsed_data, model_name, dataset_abbr, parallel=parallel_flag)
# Generate visualization and get the score
score = visualize(df, save_path, model_name, dataset_abbr)
# Store the score in the dictionary
model_datasets_scores[dataset_abbr] = '{:.02f}'.format(score)
# Process and visualize the overall score
overall_score_pic_path = os.path.join(plot_path, f'{model_name}_overall.png')
merged_df = merge_dataframes(model_name, dataset_abbrs, parsed_data)
print(merge_dataframes)
averaged_df = calculate_elementwise_average(merged_df)
# Assume visualize returns the average score for the overall visualization
overall_score = visualize(averaged_df, overall_score_pic_path, 'weighted_average_score', 'Overall Score')
# Add the overall score to the dictionary
model_datasets_scores['Overall'] = '{:.02f}'.format(overall_score)
# Add the model's scores to the main dictionary
model_scores[model_name] = model_datasets_scores
def ensure_directory(path):
if not os.path.exists(path):
os.makedirs(path)
def get_dict_model_names(nested_dict):
model_names = []
for first_level_key in nested_dict:
model_names.append(first_level_key)
return model_names
def merge_dataframes(model_name, dataset_abbrs, parsed_data):
dfs = []
for dataset_abbr in dataset_abbrs:
parallel_flag = 'parallel' in dataset_abbr
df = create_model_dataframe(parsed_data, model_name, dataset_abbr, parallel=parallel_flag)
if not df.empty and len(df.columns) > 1:
score_column = df.columns[-1]
df.rename(columns={score_column: dataset_abbr}, inplace=True)
dfs.append(df)
from functools import reduce
merged_df = reduce(lambda left, right: pd.merge(left, right, on='dataset', how='outer'), dfs)
if merged_df.isnull().any().any():
print('Warning: Some rows were filtered out due to NaN values. This is often due to mismatched row counts among DataFrames.')
merged_df = merged_df.dropna()
return merged_df
def calculate_elementwise_average(merged_df):
score_columns = [col for col in merged_df.columns if col != 'dataset']
origin_columns = [col for col in score_columns if 'origin' in col]
parallel_columns = [col for col in score_columns if 'parallel' in col]
multi_columns = [col for col in score_columns if 'needle' in col]
if origin_columns and parallel_columns and multi_columns:
origin_avg = merged_df[origin_columns].mean(axis=1) * 0.4
parallel_avg = merged_df[parallel_columns].mean(axis=1) * 0.3
multi_avg = merged_df[multi_columns].mean(axis=1) * 0.3
merged_df['weighted_average_score'] = origin_avg + parallel_avg + multi_avg
else:
merged_df['weighted_average_score'] = pd.Series([0] * len(merged_df))
return merged_df.iloc[:, [0, -1]]
class NeedleBenchSummarizer(DefaultSummarizer):
"""NeedleBench summarizer in OpenCompass.
Args:
config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime.
dataset_abbrs (list[str], optional): Dataset abbreviations to be listed in the summary.
summary_groups (list): The dataset groups whose results need to be averaged out. For example, mmlu. Each item it a dict with
'name' (str) and 'subsets' (list of dataset abbrs), and optionally
'weights' if weighted average is needed.
prompt_db: A deprecated field.
"""
def _format_table(self, parsed_results, dataset_metrics, dataset_eval_mode):
dataset_abbrs = [dataset_abbr_from_cfg(dataset) for dataset in self.dataset_cfgs]
prompt_version = {dataset_abbr_from_cfg(d): get_prompt_hash(d)[:6] for d in self.dataset_cfgs}
summarizer_dataset_abbrs = []
if self.dataset_abbrs is None:
# display all dataset metrics included in the config
for dataset_abbr in dataset_abbrs:
if dataset_abbr in dataset_metrics:
for metric in dataset_metrics[dataset_abbr]:
summarizer_dataset_abbrs.append((dataset_abbr, metric))
else:
summarizer_dataset_abbrs.append((dataset_abbr, None))
# along with all possible group metrics
for dataset_abbr in dataset_metrics:
for metric in dataset_metrics[dataset_abbr]:
if (dataset_abbr, metric) not in summarizer_dataset_abbrs:
summarizer_dataset_abbrs.append((dataset_abbr, metric))
else:
# follow the required order
for item in self.dataset_abbrs:
if isinstance(item, str):
summarizer_dataset_abbrs.append((item, None))
elif isinstance(item, (list, tuple)):
summarizer_dataset_abbrs.append((item[0], item[1]))
table = []
header = ['dataset', 'version', 'metric', 'mode'] + self.model_abbrs
table.append(header)
for key in dataset_metrics:
dataset_metrics[key] = list(set(dataset_metrics[key]))
for dataset_abbr, metric in summarizer_dataset_abbrs:
if dataset_abbr not in dataset_metrics:
table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(self.model_abbrs))
table.append(header)
continue
if len(dataset_metrics[dataset_abbr]) >= 10:
metric = 'average_score'
if metric is None:
metric = dataset_metrics[dataset_abbr][0]
elif metric in dataset_metrics[dataset_abbr]:
pass
else:
table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(self.model_abbrs))
continue
row = [dataset_abbr, prompt_version.get(dataset_abbr, '-'), metric, dataset_eval_mode.get(dataset_abbr, '-')]
for model_abbr in self.model_abbrs:
if dataset_abbr in parsed_results[model_abbr]:
row.append('{:.02f}'.format(parsed_results[model_abbr][dataset_abbr][metric]))
else:
row.append('-')
table.append(row)
for i in range(len(table)):
if i == 0 or table[i][0].startswith('---------'):
table[i] = [table[i][0]] + table[i][4:]
else:
table[i] = [table[i][0]] + table[i][4:]
return table
def _format_raw_txt(self, raw_results):
raw_dataset_abbrs = []
for model_abbr in self.model_abbrs:
for dataset_abbr in raw_results[model_abbr]:
if dataset_abbr not in raw_dataset_abbrs:
raw_dataset_abbrs.append(dataset_abbr)
raw_txts = []
for model_abbr in self.model_abbrs:
raw_txts.append('-------------------------------')
raw_txts.append(f'Model: {model_abbr}')
for dataset_abbr in raw_dataset_abbrs:
result = raw_results[model_abbr].get(dataset_abbr, '{}')
raw_txts.append(f'{dataset_abbr}: {result}')
raw_txts = '\n'.join(raw_txts)
return raw_txts
def _read_and_sort_dataframe(self, file_path):
# Read the file without treating the first row as a header
df = pd.read_csv(file_path, header=None)
# Function to sort columns based on the value of a specific row, excluding the first column
def sort_columns_based_on_row_corrected(df, base_row_idx, start_row_idx, end_row_idx):
# Extract the rows for sorting
sort_values_row = df.iloc[base_row_idx, 1:].replace('-', np.nan).apply(pd.to_numeric, errors='coerce')
# Handle NaNs by setting them to a value less than the minimum or using a method to keep them at the end
min_possible_value = sort_values_row.min(skipna=True) - 1 # Use min value in the row minus 1 or another method
sort_values_row_filled = sort_values_row.fillna(min_possible_value)
# Get the sorted order of indices, excluding the first column
sorted_col_indices = sort_values_row_filled.sort_values(ascending=False).index
# Apply the sorted column indices to the whole DataFrame, adjusting for Python's 0-based index
df.iloc[start_row_idx:end_row_idx+1] = df.iloc[start_row_idx:end_row_idx+1, [0] + sorted_col_indices.tolist()]
# Apply the corrected sorting function based on the description
sort_columns_based_on_row_corrected(df, 1, 0, 2) # For rows 1-2 based on row 2's values
sort_columns_based_on_row_corrected(df, 4, 3, 7) # For rows 4-7 based on row 5's values
sort_columns_based_on_row_corrected(df, 9, 8, 12) # For rows 9-12 based on row 10's values
sort_columns_based_on_row_corrected(df, 14, 13, 25) # For rows 14-25 based on row 15's values
# Return the sorted DataFrame
return df
def _output_to_file(self, output_path, time_str, table, raw_txts):
# output to file
if output_path is None:
output_path = osp.join(self.work_dir, 'summary', f'summary_{time_str}.txt')
output_csv_path = osp.join(self.work_dir, 'summary', f'summary_{time_str}.csv')
else:
output_csv_path = output_path.replace('.txt', '.csv')
output_dir = osp.split(output_path)[0]
mmengine.mkdir_or_exist(output_dir)
with open(output_path, 'w', encoding='utf-8') as f:
text = f'{time_str}\n' + \
'tabulate format\n' + \
'^' * 128 + '\n' + \
tabulate.tabulate(table, headers='firstrow') + '\n' + \
'$' * 128 + '\n\n' + \
'-' * 128 + ' THIS IS A DIVIDER ' + '-' * 128 + '\n\n' + \
'csv format\n' + \
'^' * 128 + '\n' + \
'\n'.join([','.join(row) for row in table]) + '\n' + \
'$' * 128 + '\n\n' + \
'-' * 128 + ' THIS IS A DIVIDER ' + '-' * 128 + '\n\n' + \
'raw format\n' + \
'^' * 128 + '\n' + \
raw_txts + '\n' + \
'$' * 128 + '\n'
f.write(text)
self.logger.info(f'write summary to {osp.abspath(output_path)}')
with open(output_csv_path, 'w', encoding='utf-8') as f:
f.write('\n'.join([','.join(row) for row in table]) + '\n')
self.logger.info(f'write csv to {osp.abspath(output_csv_path)}')
df_sorted = self._read_and_sort_dataframe(output_csv_path)
sorted_file_path = osp.abspath(output_csv_path).split('.')[0] + '_sorted.csv'
df_sorted.to_csv(sorted_file_path, index=False, header=False)
self.logger.info(f'write sorted csv to {sorted_file_path}')
def summarize(
self,
output_path: str = None,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): # noqa
# pick up results
raw_results, parsed_results, dataset_metrics, dataset_eval_mode = self._pick_up_results()
# calculate group metrics
raw_results, parsed_results, dataset_metrics, dataset_eval_mode = \
self._calculate_group_metrics(raw_results, parsed_results, dataset_metrics, dataset_eval_mode)
# format table
table = self._format_table(parsed_results, dataset_metrics, dataset_eval_mode)
# format raw txt
raw_txts = self._format_raw_txt(raw_results)
# output to screen
print(tabulate.tabulate(table, headers='firstrow'))
# output to .text / .csv files
self._output_to_file(output_path, time_str, table, raw_txts)
if self.lark_reporter:
content = f'{getpass.getuser()} 的'
content += f'详细评测汇总已输出至 {osp.abspath(output_path)}'
self.lark_reporter.post(content)
if output_path is None:
output_path = osp.join(self.work_dir, 'summary', f'summary_{time_str}.txt')
# plot to show visualize results
save_results_to_plots(output_path)
class NeedleBenchATCSummarizer(DefaultSummarizer):
"""NeedleBench-ATC summarizer in OpenCompass.
Args:
config (ConfigDict): The configuration object of the evaluation task. It's expected to be filled out at runtime.
dataset_abbrs (list[str], optional): Dataset abbreviations to be listed in the summary.
summary_groups (list): The dataset groups whose results need to be averaged out. For example, mmlu. Each item it a dict with
'name' (str) and 'subsets' (list of dataset abbrs), and optionally
'weights' if weighted average is needed.
prompt_db: A deprecated field.
"""
def _format_table(self, parsed_results, dataset_metrics, dataset_eval_mode):
dataset_abbrs = [dataset_abbr_from_cfg(dataset) for dataset in self.dataset_cfgs]
prompt_version = {dataset_abbr_from_cfg(d): get_prompt_hash(d)[:6] for d in self.dataset_cfgs}
summarizer_dataset_abbrs = []
if self.dataset_abbrs is None:
# display all dataset metrics included in the config
for dataset_abbr in dataset_abbrs:
if dataset_abbr in dataset_metrics:
for metric in dataset_metrics[dataset_abbr]:
summarizer_dataset_abbrs.append((dataset_abbr, metric))
else:
summarizer_dataset_abbrs.append((dataset_abbr, None))
# along with all possible group metrics
for dataset_abbr in dataset_metrics:
for metric in dataset_metrics[dataset_abbr]:
if (dataset_abbr, metric) not in summarizer_dataset_abbrs:
summarizer_dataset_abbrs.append((dataset_abbr, metric))
else:
# follow the required order
for item in self.dataset_abbrs:
if isinstance(item, str):
summarizer_dataset_abbrs.append((item, None))
elif isinstance(item, (list, tuple)):
summarizer_dataset_abbrs.append((item[0], item[1]))
table = []
header = ['dataset', 'version', 'metric', 'mode'] + self.model_abbrs
table.append(header)
for key in dataset_metrics:
dataset_metrics[key] = list(set(dataset_metrics[key]))
for dataset_abbr, metric in summarizer_dataset_abbrs:
if dataset_abbr not in dataset_metrics:
table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(self.model_abbrs))
table.append(header)
continue
if len(dataset_metrics[dataset_abbr]) >= 10:
metric = 'average_score'
if metric is None:
metric = dataset_metrics[dataset_abbr][0]
elif metric in dataset_metrics[dataset_abbr]:
pass
else:
table.append([dataset_abbr, '-', '-', '-'] + ['-'] * len(self.model_abbrs))
continue
row = [dataset_abbr, prompt_version.get(dataset_abbr, '-'), metric, dataset_eval_mode.get(dataset_abbr, '-')]
for model_abbr in self.model_abbrs:
if dataset_abbr in parsed_results[model_abbr]:
row.append('{:.02f}'.format(parsed_results[model_abbr][dataset_abbr][metric]))
else:
row.append('-')
table.append(row)
for i in range(len(table)):
if i == 0 or table[i][0].startswith('---------'):
table[i] = [table[i][0]] + table[i][4:]
else:
table[i] = [table[i][0]] + table[i][4:]
return table
def _read_and_sort_dataframe(self, file_path):
# Read the file without treating the first row as a header
data = pd.read_csv(file_path)
# print(data)
# Correct the extraction of needle counts for all settings
data['needle_count'] = data['dataset'].str.extract(r'needle_(\d+)_').astype(float)
data['needle_count'] = data['needle_count'].astype(int)
# Define experimental settings groups
experimental_settings = {
'en': '_en$',
'zh': '_zh$',
'en_ordered': '_en_ordered',
'zh_ordered': '_zh_ordered',
}
# Function to calculate maximum needles
def calculate_max_needles(dataset):
max_needles = {model: None for model in dataset.columns if 'b' in model}
for model in max_needles.keys():
consecutive_low_scores = 0
previous_needle_count = 0
for index, row in dataset.sort_values(by='needle_count').iterrows():
try:
score = float(row[model])
except ValueError as e:
score = -1
if score < 60:
consecutive_low_scores += 1
if consecutive_low_scores == 1:
max_needles[model] = previous_needle_count
else:
consecutive_low_scores = 0
previous_needle_count = row['needle_count']
max_needle_count_seen = dataset['needle_count'].max()
max_needles[model] = max_needle_count_seen if max_needles[model] is None else max_needles[model]
return max_needles
# Calculate max needles for each group and organize results in a DataFrame
results = {}
for setting, regex in experimental_settings.items():
filtered_data = data[data['dataset'].str.contains(regex)]
results[setting] = calculate_max_needles(filtered_data)
# Convert results to DataFrame and transpose it
results_df = pd.DataFrame(results).transpose()
# Return the sorted DataFrame
results_df.index.name = 'ATC Experiment Type'
return results_df
def _output_to_file(self, output_path, time_str, table, raw_txts):
# output to file
if output_path is None:
output_path = osp.join(self.work_dir, 'summary', f'summary_{time_str}.txt')
output_csv_path = osp.join(self.work_dir, 'summary', f'summary_{time_str}.csv')
else:
output_csv_path = output_path.replace('.txt', '.csv')
output_dir = osp.split(output_path)[0]
mmengine.mkdir_or_exist(output_dir)
with open(output_path, 'w', encoding='utf-8') as f:
text = f'{time_str}\n' + \
'tabulate format\n' + \
'^' * 128 + '\n' + \
tabulate.tabulate(table, headers='firstrow') + '\n' + \
'$' * 128 + '\n\n' + \
'-' * 128 + ' THIS IS A DIVIDER ' + '-' * 128 + '\n\n' + \
'csv format\n' + \
'^' * 128 + '\n' + \
'\n'.join([','.join(row) for row in table]) + '\n' + \
'$' * 128 + '\n\n' + \
'-' * 128 + ' THIS IS A DIVIDER ' + '-' * 128 + '\n\n' + \
'raw format\n' + \
'^' * 128 + '\n' + \
raw_txts + '\n' + \
'$' * 128 + '\n'
f.write(text)
self.logger.info(f'write summary to {osp.abspath(output_path)}')
with open(output_csv_path, 'w', encoding='utf-8') as f:
f.write('\n'.join([','.join(row) for row in table]) + '\n')
# self.logger.info(f'write csv to {osp.abspath(output_csv_path)}')
df_sorted = self._read_and_sort_dataframe(output_csv_path)
df_sorted.to_csv(output_csv_path)
self.logger.info(f'write sorted csv to {output_csv_path}')
def summarize(
self,
output_path: str = None,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')): # noqa
# pick up results
raw_results, parsed_results, dataset_metrics, dataset_eval_mode = self._pick_up_results()
# calculate group metrics
raw_results, parsed_results, dataset_metrics, dataset_eval_mode = \
self._calculate_group_metrics(raw_results, parsed_results, dataset_metrics, dataset_eval_mode)
# format table
table = self._format_table(parsed_results, dataset_metrics, dataset_eval_mode)
# format raw txt
raw_txts = self._format_raw_txt(raw_results)
# output to .text / .csv files
self._output_to_file(output_path, time_str, table, raw_txts)
if self.lark_reporter:
content = f'{getpass.getuser()} 的'
content += f'详细评测汇总已输出至 {osp.abspath(output_path)}'
self.lark_reporter.post(content)
if output_path is None:
output_path = osp.join(self.work_dir, 'summary', f'summary_{time_str}.txt')
|