File size: 7,020 Bytes
256a159 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# flake8: noqa: E501
import ast
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
from itertools import product
import mmengine
from mmengine import ConfigDict
from prettytable import from_csv
from opencompass.partitioners.sub_naive import remove_duplicate_pairs
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
from .utils import get_judgeanswer_and_reference, get_outdir
def post_process_alpacav1(completion: str):
r"""Parse a completion that contains a list of dictionary and returns the rank of the model1.
Examples
--------
>>> ranking_parser("[{'model': 'model_1', 'rank': 1}, {'model': 'model_2', 'rank': 2}]")
1
>>> ranking_parser("[{'model': 'model_1', 'rank': 2}, {'model': 'model_2', 'rank': 1}]")
2
>>> ranking_parser("[{'model': 'model_1', 'rank': 3}, {'model': 'model_2', 'rank': 1}]")
None
"""
try:
if isinstance(completion, str):
completion = re.findall(r'\[.*?\]', completion)[0]
ordered_completions = ast.literal_eval(completion)
else:
ordered_completions = completion
rank = [c for c in ordered_completions
if c['model'] == 'model_1'][0]['rank']
if rank in [1, 2]:
return {'rank': rank}
else:
return None
except Exception as e:
return None
def post_process_alpacav2(completion: str):
r"""Parse a completion that contains 'm' or 'M' and returns the rank of the model1.
Examples
--------
>>> ranking_parser("m")
1
>>> ranking_parser("M")
2
>>> ranking_parser("s")
None
"""
try:
if completion[0] == 'm':
return {'rank': 1}
elif completion[0] == 'M':
return {'rank': 2}
else:
return None
except Exception as e:
return None
class AlpacaSummarizer:
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict, judge_type='v2') -> None:
self.tasks = []
self.cfg = config
self.base_models = self.cfg['eval']['partitioner']['base_models']
self.compare_models = self.cfg['eval']['partitioner']['compare_models']
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_model'])
self.judge_type = judge_type
assert self.judge_type in ['v1', 'v2']
self.judge_map = {
'v1': post_process_alpacav1,
'v2': post_process_alpacav2
}
self.judge_function = self.judge_map[self.judge_type]
def summarize(self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
dataset_cfgs = self.cfg['datasets']
output_dir, results_folder = get_outdir(self.cfg, time_str)
model_combinations = list(
product(self.base_models, self.compare_models))
unique_combinations = remove_duplicate_pairs(
[combo for combo in model_combinations if combo[0] != combo[1]])
for model_pair in unique_combinations:
model1, model2, judge_model = model_pair[0]['abbr'], model_pair[1][
'abbr'], self.judge_abbr
subdir = model1 + '_' + model2 + '_judged-by--' + self.judge_abbr
subdir_path = os.path.join(results_folder, subdir)
if os.path.isdir(subdir_path):
fout = osp.join(output_dir,
'judged-by--' + judge_model + '-report.csv')
for dataset in dataset_cfgs:
judged_answers, references = get_judgeanswer_and_reference(
dataset, subdir_path, self.judge_function)
win_model1, win_model2, categories = defaultdict(
float), defaultdict(float), defaultdict(float)
model1, model2 = references[0]['answer1'], references[0][
'answer2']
for prediction, reference in zip(judged_answers,
references):
categories['total'] += 1
categories[reference['capability']] += 1
if prediction['rank'] == 1:
if reference['answer1'] == model1:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
else:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
if reference['answer1'] == model1:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
for capability in categories:
if capability not in win_model1:
win_model1[capability] = 0.0
else:
win_model1[capability] = round(
(win_model1[capability] /
categories[capability]) * 100, 2)
if capability not in win_model2:
win_model2[capability] = 0.0
else:
win_model2[capability] = round(
(win_model2[capability] /
categories[capability]) * 100, 2)
scores = {
'win_' + model1: win_model1,
'win_' + model2: win_model2
}
rows = list(scores.keys())
columns = list(scores[rows[0]].keys())
columns.insert(0, columns.pop(columns.index('total')))
with open(fout, 'a+', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow([model1 + '_vs_' + model2] + columns)
for row in rows:
writer.writerow(
[row] +
[scores[row][column] for column in columns])
else:
print(subdir_path + ' is not exist! please check!')
with open(fout, 'r') as f:
x = from_csv(f)
print(x)
|