|
import os |
|
from typing import List, Union |
|
|
|
import tabulate |
|
from mmengine.config import Config |
|
|
|
from opencompass.datasets.custom import make_custom_dataset_config |
|
from opencompass.partitioners import NaivePartitioner, SizePartitioner |
|
from opencompass.runners import DLCRunner, LocalRunner, SlurmRunner |
|
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask |
|
from opencompass.utils import get_logger, match_files |
|
|
|
|
|
def match_cfg_file(workdir: str, pattern: Union[str, List[str]]) -> List[str]: |
|
"""Match the config file in workdir recursively given the pattern. |
|
|
|
Additionally, if the pattern itself points to an existing file, it will be |
|
directly returned. |
|
""" |
|
if isinstance(pattern, str): |
|
pattern = [pattern] |
|
pattern = [p + '.py' if not p.endswith('.py') else p for p in pattern] |
|
files = match_files(workdir, pattern, fuzzy=False) |
|
if len(files) != len(pattern): |
|
nomatched = [] |
|
ambiguous = [] |
|
err_msg = ('The provided pattern matches 0 or more than one ' |
|
'config. Please verify your pattern and try again. ' |
|
'You may use tools/list_configs.py to list or ' |
|
'locate the configurations.\n') |
|
for p in pattern: |
|
files = match_files(workdir, p, fuzzy=False) |
|
if len(files) == 0: |
|
nomatched.append([p[:-3]]) |
|
elif len(files) > 1: |
|
ambiguous.append([p[:-3], '\n'.join(f[1] for f in files)]) |
|
if nomatched: |
|
table = [['Not matched patterns'], *nomatched] |
|
err_msg += tabulate.tabulate(table, |
|
headers='firstrow', |
|
tablefmt='psql') |
|
if ambiguous: |
|
table = [['Ambiguous patterns', 'Matched files'], *ambiguous] |
|
err_msg += tabulate.tabulate(table, |
|
headers='firstrow', |
|
tablefmt='psql') |
|
raise ValueError(err_msg) |
|
return files |
|
|
|
|
|
def get_config_from_arg(args) -> Config: |
|
"""Get the config object given args. |
|
|
|
Only a few argument combinations are accepted (priority from high to low) |
|
1. args.config |
|
2. args.models and args.datasets |
|
3. Huggingface parameter groups and args.datasets |
|
""" |
|
if args.config: |
|
config = Config.fromfile(args.config, format_python_code=False) |
|
for i, dataset in enumerate(config['datasets']): |
|
if 'type' not in dataset: |
|
config['datasets'][i] = make_custom_dataset_config(dataset) |
|
return config |
|
|
|
if not args.datasets and not args.custom_dataset_path: |
|
raise ValueError('You must specify "--datasets" or ' |
|
'"--custom-dataset-path" if you do not specify a ' |
|
'config file path.') |
|
datasets = [] |
|
if args.datasets: |
|
datasets_dir = os.path.join(args.config_dir, 'datasets') |
|
for dataset in match_cfg_file(datasets_dir, args.datasets): |
|
get_logger().info(f'Loading {dataset[0]}: {dataset[1]}') |
|
cfg = Config.fromfile(dataset[1]) |
|
for k in cfg.keys(): |
|
if k.endswith('_datasets'): |
|
datasets += cfg[k] |
|
else: |
|
dataset = {'path': args.custom_dataset_path} |
|
if args.custom_dataset_infer_method is not None: |
|
dataset['infer_method'] = args.custom_dataset_infer_method |
|
if args.custom_dataset_data_type is not None: |
|
dataset['data_type'] = args.custom_dataset_data_type |
|
if args.custom_dataset_meta_path is not None: |
|
dataset['meta_path'] = args.custom_dataset_meta_path |
|
dataset = make_custom_dataset_config(dataset) |
|
datasets.append(dataset) |
|
|
|
|
|
if not args.models and not args.hf_path: |
|
raise ValueError('You must specify a config file path, ' |
|
'or specify --models and --datasets, or ' |
|
'specify HuggingFace model parameters and ' |
|
'--datasets.') |
|
models = [] |
|
if args.models: |
|
model_dir = os.path.join(args.config_dir, 'models') |
|
for model in match_cfg_file(model_dir, args.models): |
|
get_logger().info(f'Loading {model[0]}: {model[1]}') |
|
cfg = Config.fromfile(model[1]) |
|
if 'models' not in cfg: |
|
raise ValueError( |
|
f'Config file {model[1]} does not contain "models" field') |
|
models += cfg['models'] |
|
else: |
|
from opencompass.models import HuggingFace |
|
model = dict(type=f'{HuggingFace.__module__}.{HuggingFace.__name__}', |
|
path=args.hf_path, |
|
peft_path=args.peft_path, |
|
tokenizer_path=args.tokenizer_path, |
|
model_kwargs=args.model_kwargs, |
|
tokenizer_kwargs=args.tokenizer_kwargs, |
|
max_seq_len=args.max_seq_len, |
|
max_out_len=args.max_out_len, |
|
batch_padding=not args.no_batch_padding, |
|
batch_size=args.batch_size, |
|
pad_token_id=args.pad_token_id, |
|
run_cfg=dict(num_gpus=args.num_gpus)) |
|
models.append(model) |
|
|
|
summarizer = args.summarizer if args.summarizer is not None else 'example' |
|
summarizers_dir = os.path.join(args.config_dir, 'summarizers') |
|
s = match_cfg_file(summarizers_dir, [summarizer])[0] |
|
get_logger().info(f'Loading {s[0]}: {s[1]}') |
|
cfg = Config.fromfile(s[1]) |
|
summarizer = cfg['summarizer'] |
|
|
|
return Config(dict(models=models, datasets=datasets, |
|
summarizer=summarizer), |
|
format_python_code=False) |
|
|
|
|
|
def exec_mm_infer_runner(tasks, args, cfg): |
|
"""execute multimodal infer runner according to args.""" |
|
if args.slurm: |
|
runner = SlurmRunner(dict(type='MultimodalInferTask'), |
|
max_num_workers=args.max_num_workers, |
|
partition=args.partition, |
|
quotatype=args.quotatype, |
|
retry=args.retry, |
|
debug=args.debug, |
|
lark_bot_url=cfg['lark_bot_url']) |
|
elif args.dlc: |
|
raise NotImplementedError('Currently, we do not support evaluating \ |
|
multimodal models on dlc.') |
|
else: |
|
runner = LocalRunner(task=dict(type='MultimodalInferTask'), |
|
max_num_workers=args.max_num_workers, |
|
debug=args.debug, |
|
lark_bot_url=cfg['lark_bot_url']) |
|
runner(tasks) |
|
|
|
|
|
def get_config_type(obj) -> str: |
|
return f'{obj.__module__}.{obj.__name__}' |
|
|
|
|
|
def fill_infer_cfg(cfg, args): |
|
new_cfg = dict(infer=dict( |
|
partitioner=dict(type=get_config_type(SizePartitioner), |
|
max_task_size=args.max_partition_size, |
|
gen_task_coef=args.gen_task_coef), |
|
runner=dict( |
|
max_num_workers=args.max_num_workers, |
|
debug=args.debug, |
|
task=dict(type=get_config_type(OpenICLInferTask)), |
|
lark_bot_url=cfg['lark_bot_url'], |
|
)), ) |
|
if args.slurm: |
|
new_cfg['infer']['runner']['type'] = get_config_type(SlurmRunner) |
|
new_cfg['infer']['runner']['partition'] = args.partition |
|
new_cfg['infer']['runner']['quotatype'] = args.quotatype |
|
new_cfg['infer']['runner']['qos'] = args.qos |
|
new_cfg['infer']['runner']['retry'] = args.retry |
|
elif args.dlc: |
|
new_cfg['infer']['runner']['type'] = get_config_type(DLCRunner) |
|
new_cfg['infer']['runner']['aliyun_cfg'] = Config.fromfile( |
|
args.aliyun_cfg) |
|
new_cfg['infer']['runner']['retry'] = args.retry |
|
else: |
|
new_cfg['infer']['runner']['type'] = get_config_type(LocalRunner) |
|
new_cfg['infer']['runner'][ |
|
'max_workers_per_gpu'] = args.max_workers_per_gpu |
|
cfg.merge_from_dict(new_cfg) |
|
|
|
|
|
def fill_eval_cfg(cfg, args): |
|
new_cfg = dict( |
|
eval=dict(partitioner=dict(type=get_config_type(NaivePartitioner)), |
|
runner=dict( |
|
max_num_workers=args.max_num_workers, |
|
debug=args.debug, |
|
task=dict(type=get_config_type(OpenICLEvalTask)), |
|
lark_bot_url=cfg['lark_bot_url'], |
|
))) |
|
if args.slurm: |
|
new_cfg['eval']['runner']['type'] = get_config_type(SlurmRunner) |
|
new_cfg['eval']['runner']['partition'] = args.partition |
|
new_cfg['eval']['runner']['quotatype'] = args.quotatype |
|
new_cfg['eval']['runner']['qos'] = args.qos |
|
new_cfg['eval']['runner']['retry'] = args.retry |
|
elif args.dlc: |
|
new_cfg['eval']['runner']['type'] = get_config_type(DLCRunner) |
|
new_cfg['eval']['runner']['aliyun_cfg'] = Config.fromfile( |
|
args.aliyun_cfg) |
|
new_cfg['eval']['runner']['retry'] = args.retry |
|
else: |
|
new_cfg['eval']['runner']['type'] = get_config_type(LocalRunner) |
|
new_cfg['eval']['runner'][ |
|
'max_workers_per_gpu'] = args.max_workers_per_gpu |
|
cfg.merge_from_dict(new_cfg) |
|
|