TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
4.83 kB
import json
import re
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class GaokaoBenchDataset(BaseDataset):
@staticmethod
def load(path: str):
with open(path, encoding='utf-8') as f:
data = json.load(f)
return Dataset.from_list(data['example'])
valid_gaokao_bench_question_types = [
'single_choice', 'multi_choice', 'multi_question_choice',
'five_out_of_seven', 'cloze', 'subjective', 'correction'
]
class GaokaoBenchEvaluator(BaseEvaluator):
def __init__(self, question_type) -> None:
super().__init__()
assert question_type in valid_gaokao_bench_question_types
self.question_type = question_type
def do_predictions_postprocess(self, model_output, answer_lenth=None):
if self.question_type == 'single_choice':
model_answer = []
temp = re.findall(r'[A-D]', model_output[::-1])
if len(temp) != 0:
model_answer.append(temp[0])
elif self.question_type == 'multi_question_choice':
model_answer = []
temp = re.findall(r'γ€η­”ζ‘ˆγ€‘\s*[::]*\s*[A-Z]', model_output)
if len(temp) == answer_lenth:
for t in temp:
model_answer.append(re.findall(r'[A-Z]', t)[0])
else:
temp = re.findall(r'[A-Z]', model_output)
if len(temp) > 0:
for k in range(min(len(temp), answer_lenth)):
model_answer.append(temp[k])
elif self.question_type == 'multi_choice':
model_answer = []
answer = ''
content = re.sub(r'\s+', '', model_output)
answer_index = content.find('γ€η­”ζ‘ˆγ€‘')
if answer_index > 0:
temp = content[answer_index:]
if len(re.findall(r'[A-D]', temp)) > 0:
for t in re.findall(r'[A-D]', temp):
answer += t
else:
temp = content[-10:]
if len(re.findall(r'[A-D]', temp)) > 0:
for t in re.findall(r'[A-D]', temp):
answer += t
if len(answer) != 0:
model_answer.append(answer)
elif self.question_type == 'five_out_of_seven':
model_answer = []
temp = re.findall(r'[A-G]', model_output)
if len(temp) > 0:
for k in range(min(5, len(temp))):
model_answer.append(temp[k])
return model_answer
def ensure_same_length(self, pred, refr):
if len(pred) == len(refr):
return pred
return ['Z'] * len(refr)
def score(self, predictions, references):
if self.question_type not in [
'single_choice', 'multi_choice', 'multi_question_choice',
'five_out_of_seven'
]:
return {'score': 0}
elif self.question_type == 'multi_choice':
correct_score, total_score = 0, 0
for pred, refr in zip(predictions, references):
pred = self.do_predictions_postprocess(pred)
pred = self.ensure_same_length(pred, refr)
for p, r in zip(pred, refr):
if p == r:
correct_score += 2
else:
for i in p:
if i not in r:
break
else:
correct_score += 1
total_score += 2
return {'score': correct_score / total_score * 100}
else:
correct_score, total_score = 0, 0
for pred, refr in zip(predictions, references):
if self.question_type == 'multi_question_choice':
pred = self.do_predictions_postprocess(pred, len(refr))
else:
pred = self.do_predictions_postprocess(pred)
pred = self.ensure_same_length(pred, refr)
for p, r in zip(pred, refr):
if p == r:
correct_score += 1
total_score += 1
return {'score': correct_score / total_score * 100}
for question_type in valid_gaokao_bench_question_types:
# fix classic closure problem
def _gaokao_register(question_type):
ICL_EVALUATORS.register_module(
name='GaokaoBenchEvaluator' + '_' + question_type,
module=lambda *args, **kwargs: GaokaoBenchEvaluator(
question_type=question_type, *args, **kwargs))
_gaokao_register(question_type)