|
import json |
|
import os.path as osp |
|
|
|
from datasets import Dataset |
|
|
|
from opencompass.registry import LOAD_DATASET |
|
|
|
from .base import BaseDataset |
|
|
|
|
|
@LOAD_DATASET.register_module() |
|
class ARCDataset(BaseDataset): |
|
|
|
@staticmethod |
|
def load(path: str): |
|
with open(path, 'r', errors='ignore') as in_f: |
|
rows = [] |
|
for line in in_f: |
|
item = json.loads(line.strip()) |
|
question = item['question'] |
|
if len(question['choices']) != 4: |
|
continue |
|
labels = [c['label'] for c in question['choices']] |
|
answerKey = 'ABCD'[labels.index(item['answerKey'])] |
|
rows.append({ |
|
'question': question['stem'], |
|
'answerKey': answerKey, |
|
'textA': question['choices'][0]['text'], |
|
'textB': question['choices'][1]['text'], |
|
'textC': question['choices'][2]['text'], |
|
'textD': question['choices'][3]['text'], |
|
}) |
|
return Dataset.from_list(rows) |
|
|
|
|
|
class ARCDatasetClean(BaseDataset): |
|
|
|
|
|
|
|
@staticmethod |
|
def load_contamination_annotations(path, split='val'): |
|
import requests |
|
|
|
assert split == 'test', 'We only have test set annotation for ARC' |
|
annotation_cache_path = osp.join( |
|
path, f'ARC_c_{split}_contamination_annotations.json') |
|
if osp.exists(annotation_cache_path): |
|
with open(annotation_cache_path, 'r') as f: |
|
annotations = json.load(f) |
|
return annotations |
|
link_of_annotations = 'https://github.com/liyucheng09/Contamination_Detector/releases/download/v0.1.1rc/ARC_annotations.json' |
|
annotations = json.loads(requests.get(link_of_annotations).text) |
|
with open(annotation_cache_path, 'w') as f: |
|
json.dump(annotations, f) |
|
return annotations |
|
|
|
@staticmethod |
|
def load(path: str): |
|
annotations = ARCDatasetClean.load_contamination_annotations( |
|
osp.dirname(path), 'test') |
|
with open(path, 'r', errors='ignore') as in_f: |
|
rows = [] |
|
for line in in_f: |
|
item = json.loads(line.strip()) |
|
id_ = item['id'] |
|
question = item['question'] |
|
if id_ in annotations: |
|
is_clean = annotations[id_][0] |
|
else: |
|
is_clean = 'not labeled' |
|
if len(question['choices']) != 4: |
|
continue |
|
labels = [c['label'] for c in question['choices']] |
|
answerKey = 'ABCD'[labels.index(item['answerKey'])] |
|
rows.append({ |
|
'question': question['stem'], |
|
'answerKey': answerKey, |
|
'textA': question['choices'][0]['text'], |
|
'textB': question['choices'][1]['text'], |
|
'textC': question['choices'][2]['text'], |
|
'textD': question['choices'][3]['text'], |
|
'is_clean': is_clean, |
|
}) |
|
return Dataset.from_list(rows) |
|
|