|
import json |
|
import os |
|
import random |
|
import re |
|
from pathlib import Path |
|
|
|
import tiktoken |
|
from datasets import Dataset |
|
|
|
from opencompass.datasets.base import BaseDataset |
|
from opencompass.openicl import BaseEvaluator |
|
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS |
|
|
|
|
|
def get_random_line_by_language(file_path, language): |
|
with open(file_path, 'r', encoding='utf-8') as file: |
|
lines = [ |
|
json.loads(line.strip()) for line in file |
|
if json.loads(line.strip())['language'] == language |
|
] |
|
|
|
if lines: |
|
random_line = random.choice(lines) |
|
return { |
|
'needle': random_line['needle'], |
|
'retrieval_question': random_line['retrieval_question'], |
|
'keyword': random_line['arg2'] |
|
} |
|
else: |
|
return None |
|
|
|
|
|
@LOAD_DATASET.register_module() |
|
class NeedleBenchOriginDataset(BaseDataset): |
|
|
|
@staticmethod |
|
def load( |
|
path: str, |
|
length: int, |
|
depth: int, |
|
tokenizer_model: str, |
|
file_list: list[str], |
|
num_repeats_per_file: int, |
|
length_buffer: int, |
|
guide: bool, |
|
language: str, |
|
needle_file_name: str, |
|
): |
|
data = {'prompt': [], 'answer': []} |
|
tokenizer = tiktoken.encoding_for_model(tokenizer_model) |
|
|
|
def _generate_context(tokens_context, depth_percent, needle): |
|
tokens_needle = _get_tokens_from_context(needle) |
|
insertion_point = int(len(tokens_context) * (depth_percent / 100)) |
|
tokens_context = (tokens_context[:insertion_point] + |
|
tokens_needle + tokens_context[insertion_point:]) |
|
new_context = _decode_tokens(tokens_context) |
|
return new_context |
|
|
|
def _get_tokens_from_context(context): |
|
return tokenizer.encode(context) |
|
|
|
def _decode_tokens(tokens): |
|
return tokenizer.decode(tokens) |
|
|
|
def _modify_retrieval_question(retrieval_question): |
|
if language == 'Chinese': |
|
parts = retrieval_question.split('请按照') |
|
guide_retrieval_question = (parts[0] + '在回答之前,请思考文档中与此问题' |
|
'最相关的内容是什么。请按照' + parts[1]) |
|
return guide_retrieval_question |
|
elif language == 'English': |
|
parts = retrieval_question.split('Please answer in the format') |
|
guide_retrieval_question = ( |
|
parts[0] + 'Before answering, please consider' |
|
' what in the document is most relevant to this question.' |
|
' Please answer in the format' + parts[1]) |
|
return guide_retrieval_question |
|
else: |
|
raise ValueError(f"Language '{language}' is not supported.") |
|
|
|
def _generate_prompt(context, retrieval_question): |
|
if guide: |
|
retrieval_question = _modify_retrieval_question( |
|
retrieval_question) |
|
|
|
if language == 'Chinese': |
|
prompt = ('你是一个善于回答用户问题的智能AI助手\n' |
|
'请保持你的回答简洁清楚。不要说和下面文档中的无关的话' |
|
',或重复你的回答\n' |
|
f'用户现在给你的文档是{context}\n\n' |
|
f'现在请问:{retrieval_question}') |
|
elif language == 'English': |
|
prompt = ('You are an intelligent AI assistant skilled in ' |
|
'answering user questions.\n' |
|
'Please keep your answers concise and clear. Do not' |
|
' talk about irrelevant topics or repeat your ' |
|
'answers.\n' |
|
f'The document given to you by the user is {context}' |
|
f'\n\nNow, the question is: {retrieval_question}') |
|
else: |
|
raise ValueError(f"Language '{language}' is not supported.") |
|
|
|
return prompt |
|
|
|
files = Path(path).glob('*.jsonl') |
|
for file in files: |
|
if file.name not in file_list: |
|
continue |
|
|
|
with open(file, 'r', encoding='utf-8') as f: |
|
lines_bak = [json.loads(line.strip()) for line in f] |
|
lines = lines_bak.copy() |
|
for counter in range(num_repeats_per_file): |
|
random.seed(counter) |
|
random.shuffle(lines) |
|
needle_file_path = os.path.join(path, needle_file_name) |
|
random_needle = get_random_line_by_language( |
|
needle_file_path, language) |
|
needle = '\n' + random_needle['needle'] + '\n' |
|
retrieval_question = random_needle['retrieval_question'] |
|
keyword = random_needle['keyword'] |
|
|
|
context_length = length - length_buffer |
|
target_length_per_record = context_length - len( |
|
_get_tokens_from_context(needle)) |
|
target_length_per_record = max(target_length_per_record, 0) |
|
accumulated_tokens = [] |
|
for line in lines: |
|
tokens_current_line = _get_tokens_from_context( |
|
line['text']) |
|
accumulated_tokens.extend(tokens_current_line) |
|
|
|
if len(accumulated_tokens) >= target_length_per_record: |
|
break |
|
|
|
processed_text = _generate_context( |
|
accumulated_tokens[:target_length_per_record], depth, |
|
needle) |
|
|
|
processed_prompt = _generate_prompt(processed_text, |
|
retrieval_question) |
|
|
|
data['prompt'].append(processed_prompt) |
|
data['answer'].append(needle + '*' + keyword) |
|
|
|
dataset = Dataset.from_dict({ |
|
'prompt': data['prompt'], |
|
'answer': data['answer'], |
|
}) |
|
return dataset |
|
|
|
|
|
class NeedleBenchOriginEvaluator(BaseEvaluator): |
|
|
|
def __init__(self, use_trim=False): |
|
self.use_trim = use_trim |
|
|
|
@staticmethod |
|
def _trim_prediction(prediction, reference): |
|
"""Trims the prediction string based on the length of the reference |
|
string. |
|
|
|
Args: |
|
prediction (str): The prediction string. |
|
reference (str): The reference string. |
|
|
|
Returns: |
|
str: The trimmed prediction string. |
|
""" |
|
l08 = int(0.8 * len(reference)) |
|
l12 = int(1.2 * len(reference)) |
|
trimmed_prediction = prediction[:l12] |
|
|
|
if len(trimmed_prediction) > l08 and \ |
|
reference[-1] in trimmed_prediction[l08:]: |
|
end_pos = l08 + trimmed_prediction[l08:].index(reference[-1]) + 1 |
|
trimmed_prediction = trimmed_prediction[:end_pos] |
|
|
|
return trimmed_prediction |
|
|
|
def levenshtein_distance(self, s1, s2): |
|
if len(s1) < len(s2): |
|
return self.levenshtein_distance(s2, s1) |
|
|
|
if len(s2) == 0: |
|
return len(s1) |
|
|
|
previous_row = range(len(s2) + 1) |
|
for i, c1 in enumerate(s1): |
|
current_row = [i + 1] |
|
for j, c2 in enumerate(s2): |
|
insertions = previous_row[j + 1] + 1 |
|
deletions = current_row[j] + 1 |
|
substitutions = previous_row[j] + (c1 != c2) |
|
current_row.append(min(insertions, deletions, substitutions)) |
|
previous_row = current_row |
|
|
|
return previous_row[-1] |
|
|
|
def score(self, predictions, gold): |
|
|
|
if len(predictions) != len(gold): |
|
return {'error': 'predictions and gold have different lengths'} |
|
|
|
total_score = 0 |
|
details = [] |
|
for prediction, reference in zip(predictions, gold): |
|
keyword = reference.split('*')[1] |
|
reference = reference.split('*')[0] |
|
raw_prediction = prediction |
|
prediction = re.sub(r'\s+', '', prediction) |
|
reference = re.sub(r'\s+', '', reference) |
|
|
|
if self.use_trim: |
|
prediction = NeedleBenchOriginEvaluator._trim_prediction( |
|
prediction, reference) |
|
|
|
edit_distance = self.levenshtein_distance(prediction, reference) |
|
max_len = max(len(prediction), len(reference)) |
|
score = 100 * (1 - |
|
edit_distance / max_len) if max_len != 0 else 100 |
|
|
|
if keyword in raw_prediction: |
|
print(f'{keyword} is in {prediction}') |
|
score = 100 |
|
else: |
|
print(f'{keyword} is not in {prediction}') |
|
score = 0.2 * score |
|
|
|
detail = { |
|
'pred': prediction, |
|
'answer': reference, |
|
'edit_distance': edit_distance, |
|
'score': score |
|
} |
|
total_score += score |
|
details.append(detail) |
|
|
|
average_score = total_score / len(predictions) if predictions else 0 |
|
result = {'score': average_score, 'details': details} |
|
return result |
|
|
|
|
|
@TEXT_POSTPROCESSORS.register_module('needlebench') |
|
def needlebench_postprocess(text: str) -> str: |
|
return text |
|
|
|
|
|
@TEXT_POSTPROCESSORS.register_module('needlebench_dataset') |
|
def needlebench_dataset_postprocess(text: str) -> str: |
|
return text |
|
|