|
from collections import defaultdict |
|
from typing import Optional |
|
|
|
from mmengine.evaluator import BaseMetric |
|
|
|
from opencompass.registry import METRICS |
|
|
|
|
|
@METRICS.register_module() |
|
class MMEMetric(BaseMetric): |
|
"""Dump model's prediction to a file. |
|
|
|
Args: |
|
collect_device (str): Device name used for collecting results from |
|
different ranks during distributed training. Must be 'cpu' or |
|
'gpu'. Defaults to 'cpu'. |
|
prefix (str, optional): The prefix that will be added in the metric |
|
names to disambiguate homonymous metrics of different evaluators. |
|
If prefix is not provided in the argument, self.default_prefix |
|
will be used instead. Default: None. |
|
""" |
|
|
|
task_dict = { |
|
'Perception': [ |
|
'existence', 'count', 'position', 'color', 'posters', 'celebrity', |
|
'scene', 'landmark', 'artwork', 'OCR' |
|
], |
|
'Cognition': [ |
|
'commonsense_reasoning', 'numerical_calculation', |
|
'text_translation', 'code_reasoning' |
|
] |
|
} |
|
|
|
def __init__(self, |
|
collect_device: str = 'cpu', |
|
prefix: Optional[str] = None) -> None: |
|
super().__init__(collect_device, prefix) |
|
|
|
def process(self, data_batch, data_samples) -> None: |
|
for data_sample in data_samples: |
|
result = dict() |
|
result['img_path'] = data_sample['img_path'] |
|
result['task'] = data_sample['task'] |
|
result['pred'] = 1 if data_sample['answer'].lower( |
|
) == data_sample['pred_answer'].lower() else 0 |
|
self.results.append(result) |
|
|
|
def compute_metrics(self, results: list) -> dict: |
|
|
|
|
|
record = dict() |
|
for task in (self.task_dict['Perception'] + |
|
self.task_dict['Cognition']): |
|
record[task] = defaultdict(int) |
|
for sample in results: |
|
record[sample['task']][sample['img_path']] += sample['pred'] |
|
|
|
|
|
metric = dict() |
|
for task in (self.task_dict['Perception'] + |
|
self.task_dict['Cognition']): |
|
single_sum, double_sum = 0., 0. |
|
for v in record[task].values(): |
|
assert 0 <= v <= 2 |
|
if v == 2: |
|
single_sum += 2 |
|
double_sum += 1 |
|
elif v == 1: |
|
single_sum += 1 |
|
acc = single_sum / 2 / len(record[task]) |
|
acc_plus = double_sum / len(record[task]) |
|
|
|
metric[task] = { |
|
'acc': acc, |
|
'acc_plus': acc_plus, |
|
'score': 100 * (acc + acc_plus) |
|
} |
|
|
|
|
|
score = 0 |
|
for task in self.task_dict['Perception']: |
|
score += metric[task]['score'] |
|
metric['Perception'] = score |
|
|
|
score = 0 |
|
for task in self.task_dict['Cognition']: |
|
score += metric[task]['score'] |
|
metric['Cognition'] = score |
|
|
|
metric['Overall'] = metric['Perception'] + metric['Cognition'] |
|
|
|
return metric |
|
|