|
|
|
import json |
|
import time |
|
from concurrent.futures import ThreadPoolExecutor |
|
from typing import Dict, List, Optional, Union |
|
|
|
import requests |
|
|
|
from opencompass.utils.prompt import PromptList |
|
|
|
from .base_api import BaseAPIModel |
|
|
|
PromptType = Union[PromptList, str, float] |
|
|
|
|
|
class Gemini(BaseAPIModel): |
|
"""Model wrapper around Gemini models. |
|
|
|
Documentation: |
|
|
|
Args: |
|
path (str): The name of Gemini model. |
|
e.g. `gemini-pro` |
|
key (str): Authorization key. |
|
query_per_second (int): The maximum queries allowed per second |
|
between two consecutive calls of the API. Defaults to 1. |
|
max_seq_len (int): Unused here. |
|
meta_template (Dict, optional): The model's meta prompt |
|
template if needed, in case the requirement of injecting or |
|
wrapping of any meta instructions. |
|
retry (int): Number of retires if the API call fails. Defaults to 2. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
key: str, |
|
path: str, |
|
query_per_second: int = 2, |
|
max_seq_len: int = 2048, |
|
meta_template: Optional[Dict] = None, |
|
retry: int = 2, |
|
temperature: float = 1.0, |
|
top_p: float = 0.8, |
|
top_k: float = 10.0, |
|
): |
|
super().__init__(path=path, |
|
max_seq_len=max_seq_len, |
|
query_per_second=query_per_second, |
|
meta_template=meta_template, |
|
retry=retry) |
|
self.url = f'https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent?key={key}' |
|
self.temperature = temperature |
|
self.top_p = top_p |
|
self.top_k = top_k |
|
self.headers = { |
|
'content-type': 'application/json', |
|
} |
|
|
|
def generate( |
|
self, |
|
inputs: List[str or PromptList], |
|
max_out_len: int = 512, |
|
) -> List[str]: |
|
"""Generate results given a list of inputs. |
|
|
|
Args: |
|
inputs (List[str or PromptList]): A list of strings or PromptDicts. |
|
The PromptDict should be organized in OpenCompass' |
|
API format. |
|
max_out_len (int): The maximum length of the output. |
|
|
|
Returns: |
|
List[str]: A list of generated strings. |
|
""" |
|
with ThreadPoolExecutor() as executor: |
|
results = list( |
|
executor.map(self._generate, inputs, |
|
[max_out_len] * len(inputs))) |
|
self.flush() |
|
return results |
|
|
|
def _generate( |
|
self, |
|
input: str or PromptList, |
|
max_out_len: int = 512, |
|
) -> str: |
|
"""Generate results given an input. |
|
|
|
Args: |
|
inputs (str or PromptList): A string or PromptDict. |
|
The PromptDict should be organized in OpenCompass' |
|
API format. |
|
max_out_len (int): The maximum length of the output. |
|
|
|
Returns: |
|
str: The generated string. |
|
""" |
|
assert isinstance(input, (str, PromptList)) |
|
|
|
if isinstance(input, str): |
|
messages = [{'role': 'user', 'parts': [{'text': input}]}] |
|
else: |
|
messages = [] |
|
system_prompt = None |
|
for item in input: |
|
if item['role'] == 'SYSTEM': |
|
system_prompt = item['prompt'] |
|
for item in input: |
|
if system_prompt is not None: |
|
msg = { |
|
'parts': [{ |
|
'text': system_prompt + '\n' + item['prompt'] |
|
}] |
|
} |
|
else: |
|
msg = {'parts': [{'text': item['prompt']}]} |
|
if item['role'] == 'HUMAN': |
|
msg['role'] = 'user' |
|
messages.append(msg) |
|
elif item['role'] == 'BOT': |
|
msg['role'] = 'model' |
|
messages.append(msg) |
|
elif item['role'] == 'SYSTEM': |
|
pass |
|
|
|
|
|
|
|
assert msg['role'] in ['user', 'system'] |
|
|
|
data = { |
|
'model': |
|
self.path, |
|
'contents': |
|
messages, |
|
'safetySettings': [ |
|
{ |
|
'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', |
|
'threshold': 'BLOCK_NONE' |
|
}, |
|
{ |
|
'category': 'HARM_CATEGORY_HATE_SPEECH', |
|
'threshold': 'BLOCK_NONE' |
|
}, |
|
{ |
|
'category': 'HARM_CATEGORY_HARASSMENT', |
|
'threshold': 'BLOCK_NONE' |
|
}, |
|
{ |
|
'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', |
|
'threshold': 'BLOCK_NONE' |
|
}, |
|
], |
|
'generationConfig': { |
|
'candidate_count': 1, |
|
'temperature': self.temperature, |
|
'maxOutputTokens': 2048, |
|
'topP': self.top_p, |
|
'topK': self.top_k |
|
} |
|
} |
|
|
|
for _ in range(self.retry): |
|
self.wait() |
|
raw_response = requests.post(self.url, |
|
headers=self.headers, |
|
data=json.dumps(data)) |
|
try: |
|
response = raw_response.json() |
|
except requests.JSONDecodeError: |
|
self.logger.error('JsonDecode error, got', |
|
str(raw_response.content)) |
|
time.sleep(1) |
|
continue |
|
if raw_response.status_code == 200 and response['msg'] == 'ok': |
|
body = response['body'] |
|
if 'candidates' not in body: |
|
self.logger.error(response) |
|
else: |
|
if 'content' not in body['candidates'][0]: |
|
return "Due to Google's restrictive policies, I am unable to respond to this question." |
|
else: |
|
return body['candidates'][0]['content']['parts'][0][ |
|
'text'].strip() |
|
self.logger.error(response['msg']) |
|
self.logger.error(response) |
|
time.sleep(1) |
|
|
|
raise RuntimeError('API call failed.') |
|
|
|
|
|
class GeminiAllesAPIN(Gemini): |
|
"""Model wrapper around Gemini models. |
|
|
|
Documentation: |
|
|
|
Args: |
|
path (str): The name of Gemini model. |
|
e.g. `gemini-pro` |
|
key (str): Authorization key. |
|
query_per_second (int): The maximum queries allowed per second |
|
between two consecutive calls of the API. Defaults to 1. |
|
max_seq_len (int): Unused here. |
|
meta_template (Dict, optional): The model's meta prompt |
|
template if needed, in case the requirement of injecting or |
|
wrapping of any meta instructions. |
|
retry (int): Number of retires if the API call fails. Defaults to 2. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
path: str, |
|
key: str, |
|
url: str, |
|
query_per_second: int = 2, |
|
max_seq_len: int = 2048, |
|
meta_template: Optional[Dict] = None, |
|
retry: int = 2, |
|
temperature: float = 1.0, |
|
top_p: float = 0.8, |
|
top_k: float = 10.0, |
|
): |
|
super().__init__(key=key, |
|
path=path, |
|
max_seq_len=max_seq_len, |
|
query_per_second=query_per_second, |
|
meta_template=meta_template, |
|
retry=retry) |
|
|
|
self.url = url |
|
self.headers = { |
|
'alles-apin-token': key, |
|
'content-type': 'application/json', |
|
} |
|
|
|
def generate( |
|
self, |
|
inputs: List[str or PromptList], |
|
max_out_len: int = 512, |
|
) -> List[str]: |
|
"""Generate results given a list of inputs. |
|
|
|
Args: |
|
inputs (List[str or PromptList]): A list of strings or PromptDicts. |
|
The PromptDict should be organized in OpenCompass' |
|
API format. |
|
max_out_len (int): The maximum length of the output. |
|
|
|
Returns: |
|
List[str]: A list of generated strings. |
|
""" |
|
return super().generate(inputs, max_out_len) |
|
|