|
from typing import Dict, List, Optional |
|
|
|
from opencompass.models.base import BaseModel |
|
from opencompass.utils import get_logger |
|
|
|
try: |
|
from vllm import LLM, SamplingParams |
|
except ImportError: |
|
LLM, SamplingParams = None, None |
|
|
|
DEFAULT_MODEL_KWARGS = dict(trust_remote_code=True) |
|
|
|
|
|
class VLLM(BaseModel): |
|
"""Model Wrapper for VLLM.""" |
|
|
|
def __init__( |
|
self, |
|
path: str, |
|
max_seq_len: int = 2048, |
|
model_kwargs: dict = None, |
|
generation_kwargs: dict = dict(), |
|
meta_template: Optional[Dict] = None, |
|
mode: str = 'none', |
|
use_fastchat_template: bool = False, |
|
end_str: Optional[str] = None, |
|
): |
|
super().__init__(path=path, |
|
max_seq_len=max_seq_len, |
|
meta_template=meta_template) |
|
|
|
assert LLM, ('Please install VLLM with `pip install vllm`. ' |
|
'note: torch==2.1.2 is required.') |
|
self.logger = get_logger() |
|
self._load_model(path, model_kwargs) |
|
self.tokenizer = self.model.get_tokenizer() |
|
self.generation_kwargs = generation_kwargs |
|
self.generation_kwargs.pop('do_sample', None) |
|
|
|
assert mode in ['none', 'mid'] |
|
self.mode = mode |
|
self.use_fastchat_template = use_fastchat_template |
|
self.end_str = end_str |
|
|
|
def _load_model(self, |
|
path: str, |
|
add_model_kwargs: dict = None, |
|
num_retry: int = 3): |
|
model_kwargs = DEFAULT_MODEL_KWARGS.copy() |
|
if add_model_kwargs is not None: |
|
model_kwargs.update(add_model_kwargs) |
|
self.model = LLM(path, **model_kwargs) |
|
|
|
def generate(self, inputs: List[str], max_out_len: int, |
|
**kwargs) -> List[str]: |
|
"""Generate results given a list of inputs. |
|
|
|
Args: |
|
inputs (List[str]): A list of strings. |
|
max_out_len (int): The maximum length of the output. |
|
|
|
Returns: |
|
List[str]: A list of generated strings. |
|
""" |
|
|
|
if self.mode == 'mid': |
|
input_ids = self.tokenizer(inputs, truncation=False)['input_ids'] |
|
inputs = [] |
|
for input_id in input_ids: |
|
if len(input_id) > self.max_seq_len - max_out_len: |
|
half = int((self.max_seq_len - max_out_len) / 2) |
|
inputs.append( |
|
self.tokenizer.decode(input_id[:half], |
|
skip_special_tokens=True) + |
|
self.tokenizer.decode(input_id[-half:], |
|
skip_special_tokens=True)) |
|
else: |
|
inputs.append( |
|
self.tokenizer.decode(input_id, |
|
skip_special_tokens=True)) |
|
|
|
generation_kwargs = kwargs.copy() |
|
generation_kwargs.update(self.generation_kwargs) |
|
generation_kwargs.update({'max_tokens': max_out_len}) |
|
sampling_kwargs = SamplingParams(**generation_kwargs) |
|
outputs = self.model.generate(inputs, sampling_kwargs) |
|
|
|
prompt_list, output_strs = [], [] |
|
for output in outputs: |
|
prompt = output.prompt |
|
generated_text = output.outputs[0].text |
|
|
|
if self.end_str: |
|
generated_text = generated_text.split(self.end_str)[0] |
|
prompt_list.append(prompt) |
|
output_strs.append(generated_text) |
|
|
|
return output_strs |
|
|
|
def prompts_preproccess(self, inputs: List[str]): |
|
if self.use_fastchat_template: |
|
try: |
|
from fastchat.model import get_conversation_template |
|
except ModuleNotFoundError: |
|
raise ModuleNotFoundError( |
|
'Fastchat is not implemented. You can use ' |
|
"'pip install \"fschat[model_worker,webui]\"' " |
|
'to implement fastchat.') |
|
conv = get_conversation_template('vicuna') |
|
conv.append_message(conv.roles[0], inputs[0]) |
|
conv.append_message(conv.roles[1], None) |
|
inputs = [conv.get_prompt()] |
|
return inputs |
|
|
|
def get_token_len(self, prompt: str) -> int: |
|
"""Get lengths of the tokenized strings. |
|
|
|
Args: |
|
prompt (str): Input string. |
|
|
|
Returns: |
|
int: Length of the input tokens |
|
""" |
|
return len(self.model.get_tokenizer().encode(prompt)) |
|
|