TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
4.59 kB
import random
import re
import torch
class OTTERMMBenchPostProcessor:
""""Post processor for OTTER on MMBench."""
def __init__(self) -> None:
pass
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
if output_token[0] == 0:
output_token = output_token[1:]
if output_token[0] == 1:
output_token = output_token[1:]
output_text = tokenizer.decode(output_token,
add_special_tokens=False) # noqa
output_text = self._extract_key_words(output_text)
return output_text
def _extract_key_words(self, output_text: str) -> str:
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip().
split('<|endofchunk|>')[0].lstrip().rstrip())
pattern = re.compile(r'([A-Z]\.)')
res = pattern.findall(output_text)
if len(res) > 0:
output_text = res[0][:-1]
return output_text
class OTTERCOCOCaptionPostProcessor:
""""Post processor for OTTER on COCO Caption."""
def __init__(self) -> None:
pass
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
if output_token[0] == 0:
output_token = output_token[1:]
if output_token[0] == 1:
output_token = output_token[1:]
output_text = tokenizer.decode(output_token,
add_special_tokens=False) # noqa
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip().
split('<|endofchunk|>')[0].lstrip().rstrip())
pattern = re.compile(r'([A-Z]\.)')
res = pattern.findall(output_text)
if len(res) > 0:
output_text = res[0][:-1]
return output_text
class OTTERScienceQAPostProcessor:
""""Post processor for OTTER on ScienceQA."""
def __init__(self) -> None:
pass
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
if output_token[0] == 0:
output_token = output_token[1:]
if output_token[0] == 1:
output_token = output_token[1:]
output_text = tokenizer.decode(output_token,
add_special_tokens=False) # noqa
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip().
split('<|endofchunk|>')[0].lstrip().rstrip())
pattern = re.compile(r'\(([A-Z])\)')
output_text = pattern.findall(output_text)
if len(output_text) == 0:
output_text = random.choice(['A', 'B', 'C', 'D'])
else:
output_text = output_text[0]
return output_text
class OTTERVQAPostProcessor:
""""Post processor for OTTER on VQA."""
def __init__(self) -> None:
pass
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
if output_token[0] == 0:
output_token = output_token[1:]
if output_token[0] == 1:
output_token = output_token[1:]
output_text = tokenizer.decode(output_token,
add_special_tokens=False) # noqa
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip().
split('<|endofchunk|>')[0].lstrip().rstrip())
return output_text
class OTTERVSRPostProcessor:
""""Post processor for OTTER on VSR."""
def __init__(self) -> None:
pass
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
if output_token[0] == 0:
output_token = output_token[1:]
if output_token[0] == 1:
output_token = output_token[1:]
output_text = tokenizer.decode(output_token, add_special_tokens=False)
pattern = r'yes|no|Yes|No'
output_text = re.findall(pattern, output_text)
if len(output_text) > 0:
output_text = output_text[0].lower()
return output_text
class OTTERMMEPostProcessor(OTTERMMBenchPostProcessor):
""""Post processor for OTTER on MME."""
def __init__(self) -> None:
super().__init__()
def __call__(self, output_token: torch.tensor, tokenizer) -> str:
response = super().__call__(output_token, tokenizer)
# extract yes or no, copy from MME official evaluation script
prefix_pred_ans = response[:4].lower()
if 'yes' in prefix_pred_ans:
pred_label = 'yes'
elif 'no' in prefix_pred_ans:
pred_label = 'no'
else:
pred_label = 'other'
return pred_label