|
import random |
|
import re |
|
|
|
import torch |
|
|
|
|
|
class OTTERMMBenchPostProcessor: |
|
""""Post processor for OTTER on MMBench.""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str: |
|
|
|
if output_token[0] == 0: |
|
output_token = output_token[1:] |
|
if output_token[0] == 1: |
|
output_token = output_token[1:] |
|
output_text = tokenizer.decode(output_token, |
|
add_special_tokens=False) |
|
output_text = self._extract_key_words(output_text) |
|
return output_text |
|
|
|
def _extract_key_words(self, output_text: str) -> str: |
|
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip(). |
|
split('<|endofchunk|>')[0].lstrip().rstrip()) |
|
pattern = re.compile(r'([A-Z]\.)') |
|
res = pattern.findall(output_text) |
|
if len(res) > 0: |
|
output_text = res[0][:-1] |
|
return output_text |
|
|
|
|
|
class OTTERCOCOCaptionPostProcessor: |
|
""""Post processor for OTTER on COCO Caption.""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str: |
|
|
|
if output_token[0] == 0: |
|
output_token = output_token[1:] |
|
if output_token[0] == 1: |
|
output_token = output_token[1:] |
|
output_text = tokenizer.decode(output_token, |
|
add_special_tokens=False) |
|
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip(). |
|
split('<|endofchunk|>')[0].lstrip().rstrip()) |
|
pattern = re.compile(r'([A-Z]\.)') |
|
res = pattern.findall(output_text) |
|
if len(res) > 0: |
|
output_text = res[0][:-1] |
|
return output_text |
|
|
|
|
|
class OTTERScienceQAPostProcessor: |
|
""""Post processor for OTTER on ScienceQA.""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str: |
|
|
|
if output_token[0] == 0: |
|
output_token = output_token[1:] |
|
if output_token[0] == 1: |
|
output_token = output_token[1:] |
|
output_text = tokenizer.decode(output_token, |
|
add_special_tokens=False) |
|
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip(). |
|
split('<|endofchunk|>')[0].lstrip().rstrip()) |
|
pattern = re.compile(r'\(([A-Z])\)') |
|
output_text = pattern.findall(output_text) |
|
if len(output_text) == 0: |
|
output_text = random.choice(['A', 'B', 'C', 'D']) |
|
else: |
|
output_text = output_text[0] |
|
return output_text |
|
|
|
|
|
class OTTERVQAPostProcessor: |
|
""""Post processor for OTTER on VQA.""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str: |
|
|
|
if output_token[0] == 0: |
|
output_token = output_token[1:] |
|
if output_token[0] == 1: |
|
output_token = output_token[1:] |
|
output_text = tokenizer.decode(output_token, |
|
add_special_tokens=False) |
|
output_text = (output_text.split('<answer>')[-1].lstrip().rstrip(). |
|
split('<|endofchunk|>')[0].lstrip().rstrip()) |
|
return output_text |
|
|
|
|
|
class OTTERVSRPostProcessor: |
|
""""Post processor for OTTER on VSR.""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str: |
|
|
|
if output_token[0] == 0: |
|
output_token = output_token[1:] |
|
if output_token[0] == 1: |
|
output_token = output_token[1:] |
|
output_text = tokenizer.decode(output_token, add_special_tokens=False) |
|
pattern = r'yes|no|Yes|No' |
|
output_text = re.findall(pattern, output_text) |
|
if len(output_text) > 0: |
|
output_text = output_text[0].lower() |
|
return output_text |
|
|
|
|
|
class OTTERMMEPostProcessor(OTTERMMBenchPostProcessor): |
|
""""Post processor for OTTER on MME.""" |
|
|
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
def __call__(self, output_token: torch.tensor, tokenizer) -> str: |
|
response = super().__call__(output_token, tokenizer) |
|
|
|
prefix_pred_ans = response[:4].lower() |
|
|
|
if 'yes' in prefix_pred_ans: |
|
pred_label = 'yes' |
|
elif 'no' in prefix_pred_ans: |
|
pred_label = 'no' |
|
else: |
|
pred_label = 'other' |
|
|
|
return pred_label |
|
|