TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
6.27 kB
from typing import List
import torch
from mmpretrain.structures import DataSample
class OTTERMMBenchPromptConstructor:
"""Prompt constructor for OTTER on MMBench.
Args:
image_prompt (str): Image prompt. Defaults to `''`.
reply_prompt (str): Reply prompt. Defaults to `''`.
"""
def __init__(self, user_label: str = '', model_label: str = '') -> None:
self.image_token = '<image>'
self.reply_token = '<answer>'
self.user_label = user_label
self.model_label = model_label
def __call__(self, inputs: dict) -> dict:
"""Construct prompt.
Args:
inputs (dict): Input data containing image and data_samples.
Returns:
dict: A dict containing prompt, images and data_samples.
"""
images = [image.unsqueeze(0) for image in inputs['inputs']]
data_samples = [data_sample for data_sample in inputs['data_samples']]
images = torch.cat(images, dim=0)
inputs = {'image': images, 'data_samples': data_samples}
data_samples = inputs['data_samples']
prompt = self._process(data_samples)
inputs.update({'prompt': prompt})
return inputs
def _process(self, data_samples: List[DataSample]) -> str:
"""Process data sample to prompt.
Args:
data_samples (List[DataSample]): A list of data_samples.
Returns:
str: Prompt.
"""
assert len(data_samples) == 1, 'Only support batch size 1.'
data_sample = data_samples[0]
question = data_sample.get('question')
options = data_sample.get('options')
context = data_sample.get('context')
# e.g. <image>User: What is the color of the sky? A: Blue B: Red C: Green D: Yellow GPT:<answer> # noqa
if context is not None:
prompt = f'{self.image_token}{self.user_label} {context} {question} {options} {self.model_label}:{self.reply_token}' # noqa
else:
prompt = f'{self.image_token}{self.user_label} {question} {options} {self.model_label}:{self.reply_token}' # noqa
return prompt
class OTTERCOCOCaotionPromptConstructor(OTTERMMBenchPromptConstructor):
"""Prompt constructor for OTTER on COCO Caption."""
def _process(self, data_samples: List[DataSample]) -> str:
# e.g. <image>User: a photo of GPT:<answer> # noqa
prompt = f'{self.image_token}{self.user_label} a photo of {self.model_label}:{self.reply_token}' # noqa
return prompt
class OTTERScienceQAPromptConstructor(OTTERMMBenchPromptConstructor):
"""Prompt constructor for OTTER on ScienceQA."""
choice_mapping = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'}
def _process(self, data_samples: List[DataSample]) -> str:
assert len(data_samples) == 1, 'Only support batch size 1.'
questions = [
'Question: ' + data_sample.get('question') + '\n'
for data_sample in data_samples
] # noqa
choices = [data_sample.get('choices') for data_sample in data_samples]
choices = [[
f'({self.choice_mapping[i]}) ' + item
for i, item in enumerate(choice)
] for choice in choices]
choices = [
'Choices: ' + ' '.join(choice) + '\n' for choice in choices
] # noqa
contexts = [
'Context: ' + data_sample.get('hint') + '\n'
for data_sample in data_samples
] # noqa
question = questions[0]
choice = choices[0]
context = contexts[0]
prompt = f'{self.image_token}{self.user_label} {context} {question} {choice} The answer is {self.model_label}:{self.reply_token}' # noqa
return prompt
class OTTERVQAPromptConstructor(OTTERMMBenchPromptConstructor):
"""Prompt constructor for OTTER on VQA."""
def _process(self, data_samples: List[DataSample]) -> str:
assert len(data_samples) == 1, 'Only support batch size 1.'
questions = [
data_sample.get('question') for data_sample in data_samples
]
question = questions[0]
prompt = f'{self.image_token}{self.user_label} {question}. Answer it with with few words. {self.model_label}:{self.reply_token}' # noqa
return prompt
class OTTERVSRPromptConstructor(OTTERMMBenchPromptConstructor):
"""Prompt constructor for OTTER on VSR."""
def _process(self, data_samples: List[DataSample]) -> str:
assert len(data_samples) == 1, 'Only support batch size 1.'
questions = [
data_sample.get('question') for data_sample in data_samples
]
question = questions[0]
prompt = f'{self.image_token}{self.user_label} {question}. Is the above description correct? Answer yes or no. {self.model_label}:{self.reply_token}' # noqa
return prompt
class OTTERSEEDBenchPromptConstructor(OTTERMMBenchPromptConstructor):
def _process(self, data_samples: List[DataSample]) -> str:
"""Process data sample to prompt.
Args:
data_samples (List[DataSample]): A list of data_samples.
Returns:
str: Prompt.
"""
assert len(data_samples) == 1, 'Only support batch size 1.'
questions = [
data_sample.get('question') for data_sample in data_samples
]
question = questions[0]
prompt = f'{self.image_token}{self.user_label} {question} {self.model_label}:{self.reply_token}' # noqa
return prompt
class OTTERMMEPromptConstructor(OTTERMMBenchPromptConstructor):
"""Prompt constructor for OTTER on MME.
Args:
image_prompt (str): Image prompt. Defaults to `''`.
reply_prompt (str): Reply prompt. Defaults to `''`.
"""
def _process(self, data_samples: List[DataSample]) -> str:
"""Process data sample to prompt.
Args:
data_samples (List[DataSample]): A list of data_samples.
Returns:
str: Prompt.
"""
assert len(data_samples) == 1, 'Only support batch size 1.'
question = data_samples[0].get('question')
prompt = f'{self.image_token}{self.user_label} {question} {self.model_label}:{self.reply_token}' # noqa
return prompt