TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
8.58 kB
import argparse
import os.path as osp
import random
import time
from typing import Any
from mmengine.config import Config, ConfigDict
from mmengine.utils import mkdir_or_exist
from opencompass.registry import (ICL_INFERENCERS, ICL_PROMPT_TEMPLATES,
ICL_RETRIEVERS, TASKS)
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, build_model_from_cfg,
get_infer_output_path, get_logger,
task_abbr_from_cfg)
@TASKS.register_module(force=(__name__ == '__main__')) # A hack for script run
class OpenICLAttackTask(BaseTask):
"""OpenICL Inference Task.
This task is used to run the inference process.
"""
name_prefix = 'OpenICLAttack'
log_subdir = 'logs/attack'
output_subdir = 'attack'
def __init__(self, cfg: ConfigDict):
super().__init__(cfg)
run_cfg = self.model_cfgs[0].get('run_cfg', {})
self.num_gpus = run_cfg.get('num_gpus', 0)
self.num_procs = run_cfg.get('num_procs', 1)
self.logger = get_logger()
def get_command(self, cfg_path, template):
"""Get the command template for the task.
Args:
cfg_path (str): The path to the config file of the task.
template (str): The template which have '{task_cmd}' to format
the command.
"""
script_path = __file__
if self.num_gpus > 0:
port = random.randint(12000, 32000)
command = (f'torchrun --master_port={port} '
f'--nproc_per_node {self.num_procs} '
f'{script_path} {cfg_path}')
else:
command = f'python {script_path} {cfg_path}'
return template.format(task_cmd=command)
def prompt_selection(self, inferencer, prompts):
prompt_dict = {}
for prompt in prompts:
acc = inferencer.predict(prompt)
prompt_dict[prompt] = acc
self.logger.info('{:.2f}, {}\n'.format(acc * 100, prompt))
sorted_prompts = sorted(prompt_dict.items(),
key=lambda x: x[1],
reverse=True)
return sorted_prompts
def run(self):
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}')
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
self.max_out_len = model_cfg.get('max_out_len', None)
self.batch_size = model_cfg.get('batch_size', None)
self.model = build_model_from_cfg(model_cfg)
for dataset_cfg in dataset_cfgs:
self.model_cfg = model_cfg
self.dataset_cfg = dataset_cfg
self.infer_cfg = self.dataset_cfg['infer_cfg']
self.dataset = build_dataset_from_cfg(self.dataset_cfg)
self.sub_cfg = {
'models': [self.model_cfg],
'datasets': [[self.dataset_cfg]],
}
out_path = get_infer_output_path(
self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'attack'))
if osp.exists(out_path):
continue
self._inference()
def _inference(self):
self.logger.info(
f'Start inferencing {task_abbr_from_cfg(self.sub_cfg)}')
assert hasattr(self.infer_cfg, 'ice_template') or hasattr(self.infer_cfg, 'prompt_template'), \
'Both ice_template and prompt_template cannot be None simultaneously.' # noqa: E501
ice_template = None
if hasattr(self.infer_cfg, 'ice_template'):
ice_template = ICL_PROMPT_TEMPLATES.build(
self.infer_cfg['ice_template'])
prompt_template = None
if hasattr(self.infer_cfg, 'prompt_template'):
prompt_template = ICL_PROMPT_TEMPLATES.build(
self.infer_cfg['prompt_template'])
retriever_cfg = self.infer_cfg['retriever'].copy()
retriever_cfg['dataset'] = self.dataset
retriever = ICL_RETRIEVERS.build(retriever_cfg)
# set inferencer's default value according to model's config'
inferencer_cfg = self.infer_cfg['inferencer']
inferencer_cfg['model'] = self.model
self._set_default_value(inferencer_cfg, 'max_out_len',
self.max_out_len)
self._set_default_value(inferencer_cfg, 'batch_size', self.batch_size)
inferencer_cfg['max_seq_len'] = self.model_cfg['max_seq_len']
inferencer_cfg['dataset_cfg'] = self.dataset_cfg
inferencer = ICL_INFERENCERS.build(inferencer_cfg)
out_path = get_infer_output_path(self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'attack'))
out_dir, out_file = osp.split(out_path)
mkdir_or_exist(out_dir)
from config import LABEL_SET
from prompt_attack.attack import create_attack
from prompt_attack.goal_function import PromptGoalFunction
inferencer.retriever = retriever
inferencer.prompt_template = prompt_template
inferencer.ice_template = ice_template
inferencer.output_json_filepath = out_dir
inferencer.output_json_filename = out_file
goal_function = PromptGoalFunction(
inference=inferencer,
query_budget=self.cfg['attack'].query_budget,
logger=self.logger,
model_wrapper=None,
verbose='True')
if self.cfg['attack']['dataset'] not in LABEL_SET:
# set default
self.cfg['attack']['dataset'] = 'mmlu'
attack = create_attack(self.cfg['attack'], goal_function)
prompts = self.infer_cfg['inferencer']['original_prompt_list']
sorted_prompts = self.prompt_selection(inferencer, prompts)
if True:
# if args.prompt_selection:
for prompt, acc in sorted_prompts:
self.logger.info('Prompt: {}, acc: {:.2f}%\n'.format(
prompt, acc * 100))
with open(out_dir + 'attacklog.txt', 'a+') as f:
f.write('Prompt: {}, acc: {:.2f}%\n'.format(
prompt, acc * 100))
for init_prompt, init_acc in sorted_prompts[:self.cfg['attack'].
prompt_topk]:
if init_acc > 0:
init_acc, attacked_prompt, attacked_acc, dropped_acc = attack.attack( # noqa
init_prompt)
self.logger.info('Original prompt: {}'.format(init_prompt))
self.logger.info('Attacked prompt: {}'.format(
attacked_prompt.encode('utf-8')))
self.logger.info(
'Original acc: {:.2f}%, attacked acc: {:.2f}%, dropped acc: {:.2f}%' # noqa
.format(init_acc * 100, attacked_acc * 100,
dropped_acc * 100))
with open(out_dir + 'attacklog.txt', 'a+') as f:
f.write('Original prompt: {}\n'.format(init_prompt))
f.write('Attacked prompt: {}\n'.format(
attacked_prompt.encode('utf-8')))
f.write(
'Original acc: {:.2f}%, attacked acc: {:.2f}%, dropped acc: {:.2f}%\n\n' # noqa
.format(init_acc * 100, attacked_acc * 100,
dropped_acc * 100))
else:
with open(out_dir + 'attacklog.txt', 'a+') as f:
f.write('Init acc is 0, skip this prompt\n')
f.write('Original prompt: {}\n'.format(init_prompt))
f.write('Original acc: {:.2f}% \n\n'.format(init_acc *
100))
def _set_default_value(self, cfg: ConfigDict, key: str, value: Any):
if key not in cfg:
assert value, (f'{key} must be specified!')
cfg[key] = value
def parse_args():
parser = argparse.ArgumentParser(description='Model Inferencer')
parser.add_argument('config', help='Config file path')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cfg = Config.fromfile(args.config)
start_time = time.time()
inferencer = OpenICLAttackTask(cfg)
inferencer.run()
end_time = time.time()
get_logger().info(f'time elapsed: {end_time - start_time:.2f}s')