|
import inspect |
|
from abc import abstractmethod |
|
from copy import deepcopy |
|
from typing import Dict, List, Optional |
|
|
|
from mmengine.config import ConfigDict |
|
|
|
from opencompass.utils import (dataset_abbr_from_cfg, get_logger, |
|
model_abbr_from_cfg, task_abbr_from_cfg) |
|
|
|
|
|
class BasePartitioner: |
|
"""Base class for partitioners. A partitioner is responsible for |
|
partitioning the config into tasks. |
|
|
|
Args: |
|
out_dir (str): The output directory of tasks. |
|
keep_keys (Optional[List[str]], optional): The keys to be kept from the |
|
experiment config to the task config. Defaults to None. If None, |
|
the following keys will be kept: |
|
|
|
- eval.runner.task.judge_cfg |
|
- eval.runner.task.dump_details |
|
""" |
|
|
|
def __init__(self, out_dir: str, keep_keys: Optional[List[str]] = None): |
|
self.logger = get_logger() |
|
self.out_dir = out_dir |
|
if keep_keys is None: |
|
self.keep_keys = [ |
|
'eval.runner.task.judge_cfg', |
|
'eval.runner.task.dump_details', |
|
] |
|
else: |
|
self.keep_keys = keep_keys |
|
|
|
def __call__(self, cfg: ConfigDict) -> List[Dict]: |
|
"""Generate tasks from config. Each task is defined as a |
|
dict and will run independently as a unit. Its structure is as |
|
follows: |
|
|
|
.. code-block:: python |
|
|
|
{ |
|
'models': [], # a list of model configs |
|
'datasets': [[]], # a nested list of dataset configs, each |
|
list corresponds to a model |
|
'work_dir': '', # the work dir |
|
} |
|
|
|
Args: |
|
cfg (ConfigDict): The config dict, containing "models", "dataset" |
|
and "work_dir" keys. |
|
|
|
Returns: |
|
List[Dict]: A list of tasks. |
|
""" |
|
cfg = deepcopy(cfg) |
|
|
|
work_dir = cfg['work_dir'] |
|
|
|
add_cfg = {} |
|
for k in self.keep_keys: |
|
try: |
|
key_chain = k.split('.') |
|
ori_ptr = cfg |
|
tgt_ptr = add_cfg |
|
for key in key_chain[:-1]: |
|
ori_ptr = ori_ptr[key] |
|
if key not in tgt_ptr: |
|
tgt_ptr[key] = {} |
|
tgt_ptr = tgt_ptr[key] |
|
tgt_ptr[key_chain[-1]] = ori_ptr[key_chain[-1]] |
|
except Exception: |
|
self.logger.debug(f'Key {k} not found in config, ignored.') |
|
self.logger.debug(f'Additional config: {add_cfg}') |
|
|
|
model_and_dataset_args = self.parse_model_dataset_args(cfg) |
|
|
|
tasks = self.partition(**model_and_dataset_args, |
|
work_dir=work_dir, |
|
out_dir=self.out_dir, |
|
add_cfg=add_cfg) |
|
|
|
self.logger.info(f'Partitioned into {len(tasks)} tasks.') |
|
for i, task in enumerate(tasks): |
|
self.logger.debug(f'Task {i}: {task_abbr_from_cfg(task)}') |
|
|
|
return tasks |
|
|
|
def parse_model_dataset_args(self, cfg: ConfigDict): |
|
models = cfg['models'] |
|
datasets = cfg['datasets'] |
|
|
|
sig = inspect.signature(self.partition) |
|
if 'model_dataset_combinations' in sig.parameters: |
|
combs = cfg.get('model_dataset_combinations', None) |
|
if combs is None: |
|
combs = [{'models': models, 'datasets': datasets}] |
|
else: |
|
|
|
model_abbrs = [model_abbr_from_cfg(model) for model in models] |
|
dataset_abbrs = [ |
|
dataset_abbr_from_cfg(dataset) for dataset in datasets |
|
] |
|
for comb in combs: |
|
for model in comb['models']: |
|
if model_abbr_from_cfg(model) not in model_abbrs: |
|
raise ValueError( |
|
f'Model {model_abbr_from_cfg(model)} ' |
|
'not found in config.') |
|
for dataset in comb['datasets']: |
|
if dataset_abbr_from_cfg(dataset) not in dataset_abbrs: |
|
raise ValueError( |
|
f'Dataset {dataset_abbr_from_cfg(dataset)} ' |
|
'not found in config.') |
|
used_kwargs = {'model_dataset_combinations': combs} |
|
else: |
|
if cfg.get('model_dataset_combinations', None) is not None: |
|
self.logger.warning( |
|
'model_dataset_combinations is not supported by ' |
|
f'{self.__class__.__name__}. Ignored.') |
|
used_kwargs = {'models': models, 'datasets': datasets} |
|
return used_kwargs |
|
|
|
@abstractmethod |
|
def partition(self, |
|
models: List[ConfigDict], |
|
datasets: List[ConfigDict], |
|
work_dir: str, |
|
out_dir: str, |
|
add_cfg: Dict = {}) -> List[Dict]: |
|
"""Partition model-dataset pairs into tasks. Each task is defined as a |
|
dict and will run independently as a unit. Its structure is as |
|
follows: |
|
|
|
.. code-block:: python |
|
|
|
{ |
|
'models': [], # a list of model configs |
|
'datasets': [[]], # a nested list of dataset configs, each |
|
list corresponds to a model |
|
'work_dir': '', # the work dir |
|
**add_cfg # other keys to be added in the config |
|
} |
|
|
|
Args: |
|
models (List[ConfigDict]): A list of model configs. |
|
datasets (List[ConfigDict]): A list of dataset configs. |
|
work_dir (str): The work dir for the task. |
|
out_dir (str): The full output path for the task, intended for |
|
Partitioners to check whether the task is finished via the |
|
existency of result file in this directory. |
|
add_cfg (dict): Other common keys to be added in the task config, |
|
used to share the same config among tasks. Defaults to {}. |
|
|
|
Returns: |
|
List[Dict]: A list of tasks. |
|
""" |
|
|