|
from mmengine.config import read_base |
|
from opencompass.models.openai_api import OpenAI |
|
from opencompass.partitioners import SizePartitioner |
|
from opencompass.runners import LocalRunner |
|
from opencompass.tasks import OpenICLInferTask |
|
from opencompass.models.lagent import LagentAgent |
|
from opencompass.lagent.actions.python_interpreter import PythonInterpreter |
|
from lagent import ReAct |
|
from lagent.agents.react import ReActProtocol |
|
|
|
with read_base(): |
|
from .datasets.gsm8k.gsm8k_agent_gen_be1606 import gsm8k_datasets |
|
from .datasets.math.math_agent_gen_af2293 import math_datasets |
|
from .datasets.MathBench.mathbench_agent_gen_568903 import mathbench_agent_datasets |
|
from .summarizers.math_agent import summarizer |
|
|
|
datasets = [] |
|
datasets += gsm8k_datasets |
|
datasets += math_datasets |
|
datasets += mathbench_agent_datasets |
|
|
|
system_prompt = """You are a helpful assistant which use tools to solve mathematical reasoning questions. The code must be a function, and the function name must be 'solution'. For mathematics, please use code tool to calculate. The example format is as follows: |
|
``` |
|
def solution(): |
|
variable_names_with_real_meaning = func(variable) |
|
return variable_names_with_real_meaning |
|
```""" |
|
|
|
protocol = dict( |
|
type=ReActProtocol, |
|
action=dict(role="ACTION", begin="Tool:", end="\n"), |
|
action_input=dict(role="ARGS", begin="Tool Input:", end="\n"), |
|
finish=dict(role="FINISH", begin="FinalAnswer:", end="\n"), |
|
call_protocol=system_prompt, |
|
) |
|
|
|
models = [ |
|
dict( |
|
abbr='gpt-3.5-react', |
|
type=LagentAgent, |
|
agent_type=ReAct, |
|
max_turn=3, |
|
llm=dict( |
|
type=OpenAI, |
|
path='gpt-3.5-turbo', |
|
key='ENV', |
|
query_per_second=1, |
|
max_seq_len=4096, |
|
), |
|
actions=[ |
|
dict(type=PythonInterpreter), |
|
], |
|
protocol=protocol, |
|
batch_size=1, |
|
), |
|
] |
|
|
|
infer = dict( |
|
partitioner=dict(type=SizePartitioner, max_task_size=1000), |
|
runner=dict( |
|
type=LocalRunner, |
|
max_num_workers=16, |
|
task=dict(type=OpenICLInferTask)), |
|
) |