|
from opencompass.multimodal.models.llava import LLaVAVQAPromptConstructor, LLaVABasePostProcessor |
|
|
|
|
|
val_pipeline = [ |
|
dict(type='mmpretrain.LoadImageFromFile'), |
|
dict(type='mmpretrain.ToPIL', to_rgb=True), |
|
dict(type='mmpretrain.torchvision/Resize', |
|
size=(224, 224), |
|
interpolation=3), |
|
dict(type='mmpretrain.torchvision/ToTensor'), |
|
dict( |
|
type='mmpretrain.torchvision/Normalize', |
|
mean=(0.48145466, 0.4578275, 0.40821073), |
|
std=(0.26862954, 0.26130258, 0.27577711), |
|
), |
|
dict( |
|
type='mmpretrain.PackInputs', |
|
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], |
|
meta_keys=['question_id', 'image_id'], |
|
) |
|
] |
|
|
|
|
|
dataset = dict(type='mmpretrain.GQA', |
|
data_root='data/gqa', |
|
data_prefix='images', |
|
ann_file='annotations/testdev_balanced_questions.json', |
|
pipeline=val_pipeline) |
|
|
|
llava_gqa_dataloader = dict( |
|
batch_size=1, |
|
num_workers=4, |
|
dataset=dataset, |
|
collate_fn=dict(type='pseudo_collate'), |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
) |
|
|
|
|
|
llava_gqa_model = dict( |
|
type='llava', |
|
model_path='/path/to/llava', |
|
prompt_constructor=dict(type=LLaVAVQAPromptConstructor), |
|
post_processor=dict(type=LLaVABasePostProcessor) |
|
) |
|
|
|
|
|
llava_gqa_evaluator = [dict(type='mmpretrain.GQAAcc')] |
|
|
|
|
|
|