|
from opencompass.multimodal.models.llava import LLaVAScienceQAPromptConstructor, LLaVABasePostProcessor |
|
|
|
|
|
val_pipeline = [ |
|
dict(type='mmpretrain.LoadImageFromFile'), |
|
dict(type='mmpretrain.ToPIL', to_rgb=True), |
|
dict(type='mmpretrain.torchvision/Resize', |
|
size=(224, 224), |
|
interpolation=3), |
|
dict(type='mmpretrain.torchvision/ToTensor'), |
|
dict( |
|
type='mmpretrain.torchvision/Normalize', |
|
mean=(0.48145466, 0.4578275, 0.40821073), |
|
std=(0.26862954, 0.26130258, 0.27577711), |
|
), |
|
dict(type='mmpretrain.PackInputs', |
|
algorithm_keys=[ |
|
'question', 'gt_answer', 'choices', 'hint', 'lecture', 'solution', 'has_image' |
|
]) |
|
] |
|
|
|
dataset = dict(type='mmpretrain.ScienceQA', |
|
data_root='./data/scienceqa', |
|
split='val', |
|
split_file='pid_splits.json', |
|
ann_file='problems.json', |
|
image_only=True, |
|
data_prefix=dict(img_path='val'), |
|
pipeline=val_pipeline) |
|
|
|
llava_scienceqa_dataloader = dict( |
|
batch_size=1, |
|
num_workers=4, |
|
dataset=dataset, |
|
collate_fn=dict(type='pseudo_collate'), |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
) |
|
|
|
|
|
llava_scienceqa_model = dict( |
|
type='llava', |
|
model_path='/path/to/llava', |
|
prompt_constructor=dict(type=LLaVAScienceQAPromptConstructor), |
|
post_processor=dict(type=LLaVABasePostProcessor) |
|
) |
|
|
|
|
|
llava_scienceqa_evaluator = [dict(type='mmpretrain.ScienceQAMetric')] |
|
|
|
|
|
|