TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
1.57 kB
from opencompass.multimodal.models.llava import LLaVAScienceQAPromptConstructor, LLaVABasePostProcessor
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.LoadImageFromFile'),
dict(type='mmpretrain.ToPIL', to_rgb=True),
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(
type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
dict(type='mmpretrain.PackInputs',
algorithm_keys=[
'question', 'gt_answer', 'choices', 'hint', 'lecture', 'solution', 'has_image'
])
]
dataset = dict(type='mmpretrain.ScienceQA',
data_root='./data/scienceqa',
split='val',
split_file='pid_splits.json',
ann_file='problems.json',
image_only=True,
data_prefix=dict(img_path='val'),
pipeline=val_pipeline)
llava_scienceqa_dataloader = dict(
batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False),
)
# model settings
llava_scienceqa_model = dict(
type='llava',
model_path='/path/to/llava',
prompt_constructor=dict(type=LLaVAScienceQAPromptConstructor),
post_processor=dict(type=LLaVABasePostProcessor)
) # noqa
# evaluation settings
llava_scienceqa_evaluator = [dict(type='mmpretrain.ScienceQAMetric')]