TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
1.42 kB
from opencompass.multimodal.models.llava import LLaVAVQAPromptConstructor, LLaVABasePostProcessor
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.LoadImageFromFile'),
dict(type='mmpretrain.ToPIL', to_rgb=True),
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(
type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
dict(
type='mmpretrain.PackInputs',
algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'],
meta_keys=['question_id', 'image_id'],
)
]
dataset = dict(
type='mmpretrain.TextVQA',
data_root='data/textvqa',
ann_file='annotations/TextVQA_0.5.1_val.json',
pipeline=val_pipeline,
data_prefix='images/train_images',
)
llava_textvqa_dataloader = dict(
batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False),
)
# model settings
llava_textvqa_model = dict(
type='llava',
model_path='/path/to/llava',
prompt_constructor=dict(type=LLaVAVQAPromptConstructor),
post_processor=dict(type=LLaVABasePostProcessor)
) # noqa
# evaluation settings
llava_textvqa_evaluator = [dict(type='mmpretrain.VQAAcc')]