TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
12.5 kB
import json
import os
import os.path as osp
import sys
from pathlib import Path
import clip
import mmengine
import torch
import torch.nn as nn
from mmengine.device import get_device
from timm.models.vision_transformer import Block
from opencompass.registry import MM_MODELS
def load_package():
"""Load required packages from llama_adapter_v2_multimodal7b."""
current_file_path = os.path.abspath(__file__)
current_folder_path = os.path.dirname(current_file_path)
sys.path.append(os.path.join(current_folder_path, 'LLaMA-Adapter')) # noqa
from llama_adapter_v2_multimodal7b.llama.llama import (ModelArgs,
Transformer)
from llama_adapter_v2_multimodal7b.llama.tokenizer import Tokenizer
from llama_adapter_v2_multimodal7b.llama.utils import sample_top_p
sys.path.pop(-1)
return ModelArgs, Transformer, Tokenizer, sample_top_p
ModelArgs, Transformer, Tokenizer, sample_top_p = load_package()
class LLaMA_adapter(nn.Module):
def __init__(self,
llama_ckpt_dir,
llama_tokenizer,
max_seq_len=512,
max_batch_size=1,
clip_model='ViT-L/14',
v_embed_dim=768,
v_depth=8,
v_num_heads=16,
v_mlp_ratio=4.0,
query_len=10,
query_layer=31,
w_bias=False,
w_lora=False,
lora_rank=16,
prompt_constructor=None,
post_processor=None):
super().__init__()
self.device = get_device()
# load llama configs
with open(os.path.join(llama_ckpt_dir, 'params.json'), 'r') as f:
params = json.loads(f.read())
model_args = ModelArgs(max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
**params)
# 1. clip and clip projector
self.clip, self.clip_transform = clip.load(clip_model)
clip_dim = self.clip.visual.proj.shape[1]
self.clip_proj = nn.Linear(clip_dim, v_embed_dim)
self.clip_proj_norm = nn.LayerNorm(v_embed_dim)
self.query_len = query_len
self.query_layer = query_layer
# 2. visual query, blocks and projector
self.visual_query = nn.Embedding(query_len, v_embed_dim)
self.visual_blocks = nn.ModuleList([
Block(v_embed_dim, v_num_heads, v_mlp_ratio, qkv_bias=True)
for _ in range(v_depth)
])
self.visual_proj = nn.Linear(v_embed_dim, model_args.dim)
self.visual_proj_norm = nn.LayerNorm(model_args.dim)
# 3. adapter query
self.adapter_query = nn.Embedding(query_len * query_layer,
model_args.dim)
# 4. tokenizer
self.tokenizer = Tokenizer(model_path=llama_tokenizer)
# 5. llama
model_args.vocab_size = self.tokenizer.n_words
model_args.w_bias = w_bias
model_args.w_lora = w_lora
model_args.lora_rank = lora_rank
torch.set_default_tensor_type(torch.cuda.HalfTensor)
self.llama = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
ckpts = sorted(Path(llama_ckpt_dir).glob('*.pth'))
for ckpt in ckpts:
ckpt = torch.load(ckpt, map_location='cpu')
self.llama.load_state_dict(ckpt, strict=False)
self.prompt_constructor = mmengine.registry.build_from_cfg(
prompt_constructor, MM_MODELS)
if post_processor is not None:
self.post_processor = mmengine.registry.build_from_cfg(
post_processor, MM_MODELS)
def clip_encode_image(self, x):
# modified from CLIP
x = self.clip.visual.conv1(x) # shape = [*, width, grid, grid]
# shape = [*, width, grid ** 2]
x = x.reshape(x.shape[0], x.shape[1], -1)
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([
self.clip.visual.class_embedding.to(x.dtype) + torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
],
dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.clip.visual.positional_embedding.to(x.dtype)
x = self.clip.visual.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip.visual.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
# preserve all spatial tokens
x = self.clip.visual.ln_post(x[:, :, :])
if self.clip.visual.proj is not None:
x = x @ self.clip.visual.proj
return x
def forward_visual(self, imgs):
clip_feats = self.clip_encode_image(imgs)
clip_feats = self.clip_proj_norm(self.clip_proj(clip_feats.float()))
visual_query = self.visual_query.weight.unsqueeze(0).repeat(
len(imgs), 1, 1)
visual_query = torch.cat([visual_query, clip_feats], dim=1)
for block in self.visual_blocks:
visual_query = block(visual_query)
visual_query = visual_query[:, :self.query_len, :]
visual_query = self.visual_proj(visual_query)
visual_query = self.visual_proj_norm(visual_query)
return visual_query
@torch.inference_mode()
def forward(self, visual_query, tokens, start_pos: int):
_bsz, seqlen = tokens.shape
h = self.llama.tok_embeddings(tokens)
freqs_cis = self.llama.freqs_cis.to(h.device)
freqs_cis = freqs_cis[start_pos:start_pos + seqlen]
mask = None
mask = torch.full((1, 1, seqlen, seqlen),
float('-inf'),
device=h.device)
mask = torch.triu(mask, diagonal=start_pos + 1).type_as(h)
for layer in self.llama.layers[:-1 * self.query_layer]:
h = layer(h, start_pos, freqs_cis, mask)
adapter = self.adapter_query.weight.reshape(self.query_layer,
self.query_len,
-1).unsqueeze(1)
adapter_index = 0
for layer in self.llama.layers[-1 * self.query_layer:]:
dynamic_adapter = adapter[adapter_index].repeat(_bsz, 1, 1)
dynamic_adapter = dynamic_adapter + visual_query
h = layer(h, start_pos, freqs_cis, mask, dynamic_adapter)
adapter_index = adapter_index + 1
h = self.llama.norm(h)
output = self.llama.output(h[:, -1, :])
return output.float()
def pack_inputs(self, batch):
images = [image.unsqueeze(0) for image in batch['inputs']]
data_samples = [data_sample for data_sample in batch['data_samples']]
images = torch.cat(images, dim=0).to(get_device())
inputs = {'image': images, 'data_samples': data_samples}
return inputs
@torch.inference_mode()
def generate(self, batch):
max_gen_len = 256
temperature = 0.1
top_p = 0.75
inputs = self.pack_inputs(batch)
inputs = self.prompt_constructor(inputs)
image = inputs['image']
prompts = inputs['prompt']
data_samples = inputs['data_samples']
data_sample = data_samples[0]
imgs = image
# import pdb;pdb.set_trace()
bsz = len(imgs)
params = self.llama.params
with torch.cuda.amp.autocast():
visual_query = self.forward_visual(imgs)
# import pdb;pdb.set_trace()
if isinstance(prompts[0], str):
prompts = [
self.tokenizer.encode(x, bos=True, eos=False) for x in prompts
]
# import pdb;pdb.set_trace()
min_prompt_size = min([len(t) for t in prompts])
max_prompt_size = max([len(t) for t in prompts])
total_len = min(params.max_seq_len, max_gen_len + max_prompt_size)
tokens = torch.full((bsz, total_len),
self.tokenizer.pad_id).cuda().long()
# import pdb;pdb.set_trace()
for k, t in enumerate(prompts):
if len(t) <= total_len:
tokens[k, :len(t)] = torch.tensor(t).cuda().long()
else:
tokens[k, :total_len] = torch.tensor(
t[:total_len]).cuda().long()
input_text_mask = tokens != self.tokenizer.pad_id
start_pos = min_prompt_size
prev_pos = 0
for cur_pos in range(start_pos, total_len):
with torch.cuda.amp.autocast():
logits = self.forward(visual_query,
tokens[:, prev_pos:cur_pos], prev_pos)
if temperature > 0:
probs = torch.softmax(logits / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits, dim=-1)
next_token = next_token.reshape(-1)
next_token = torch.where(input_text_mask[:, cur_pos],
tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
# trick: early stop if bsz==1
if bsz == 1 and next_token[0] == self.tokenizer.eos_id:
break
prev_pos = cur_pos
decoded = []
for i, t in enumerate(tokens.tolist()):
# cut to max gen len
t = t[len(prompts[i]):len(prompts[i]) + max_gen_len]
# cut to eos tok if any
try:
t = t[:t.index(self.tokenizer.eos_id)]
except ValueError:
pass
decoded.append(self.tokenizer.decode(t))
output_text = self.post_processor(decoded[0])
data_sample.pred_answer = output_text
return data_sample
@MM_MODELS.register_module('LLaMA-adapter-v2')
class LLaMA_adapter_v2(nn.Module):
def __init__(self,
llama_dir,
prompt_constructor: dict,
post_processor: dict,
model_path: str = 'llama_adapter_v2_multimodal7b',
name: str = 'LORA-BIAS-7B',
mode: str = 'generation',
device='cuda' if torch.cuda.is_available() else 'cpu',
download_root='ckpts'):
super().__init__()
assert name in ['LORA-BIAS-7B', 'BIAS-7B', 'CAPTION-7B']
# BIAS-7B or https://xxx/sha256_BIAS-7B.pth -> 7B
llama_type = name.split('.')[0].split('-')[-1]
llama_ckpt_dir = os.path.join(llama_dir, llama_type)
llama_tokenzier_path = os.path.join(llama_dir, 'tokenizer.model')
# load llama_adapter weights and model_cfg
print(f'Loading LLaMA-Adapter from {llama_dir}')
current_file_path = os.path.abspath(__file__)
current_folder_path = os.path.dirname(current_file_path)
model_path = osp.join(current_folder_path, 'LLaMA-Adapter', model_path)
ckpt_root = osp.join(model_path, download_root)
ckpt_map = {
'LORA-BIAS-7B':
'1bcbffc43484332672092e0024a8699a6eb5f558161aebf98a7c6b1db67224d1_LORA-BIAS-7B.pth', # noqa: E501
'BIAS-7B':
'7fa55208379faf2dd862565284101b0e4a2a72114d6490a95e432cf9d9b6c813_BIAS-7B.pth', # noqa: E501
'CAPTION-7B':
'5088aeb63a89746b90bcfd5cb819e1c7411b2771b267c6d131ce73e250a8abf0_CAPTION-7B.pth' # noqa: E501
}
ckpt = torch.load(osp.join(ckpt_root, ckpt_map[name]),
map_location='cpu')
model_cfg = ckpt.get('config', {})
self.model = LLaMA_adapter(
llama_ckpt_dir,
llama_tokenzier_path,
max_seq_len=512,
max_batch_size=1,
clip_model='ViT-L/14',
v_embed_dim=768,
v_depth=8,
v_num_heads=16,
v_mlp_ratio=4.0,
query_len=10,
query_layer=31,
w_bias=model_cfg.get('w_bias', False),
w_lora=model_cfg.get('w_lora', False),
lora_rank=model_cfg.get('lora_rank', 16),
prompt_constructor=prompt_constructor,
post_processor=post_processor,
)
self.model.load_state_dict(ckpt['model'], strict=False)
self.mode = mode
def forward(self, batch):
if self.mode == 'generation':
return self.model.generate(batch)