|
|
|
|
|
|
|
|
|
"""Generation support.""" |
|
|
|
from typing import List, Tuple, Union |
|
|
|
import torch |
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
HistoryType = List[Tuple[str, str]] |
|
TokensType = List[int] |
|
BatchTokensType = List[List[int]] |
|
|
|
|
|
def pad_batch(batch: BatchTokensType, pad_id: int, |
|
seq_length: int) -> BatchTokensType: |
|
for tokens in batch: |
|
context_length = len(tokens) |
|
if context_length < seq_length: |
|
tokens.extend([pad_id] * (seq_length - context_length)) |
|
return batch |
|
|
|
|
|
def get_ltor_masks_and_position_ids( |
|
data: torch.Tensor, |
|
eod_token: int, |
|
reset_position_ids: bool, |
|
reset_attention_mask: bool, |
|
eod_mask_loss: bool, |
|
): |
|
"""Build masks and position id for left to right model.""" |
|
|
|
|
|
micro_batch_size, seq_length = data.size() |
|
|
|
|
|
if reset_attention_mask: |
|
att_mask_batch = micro_batch_size |
|
else: |
|
att_mask_batch = 1 |
|
attention_mask = torch.tril( |
|
torch.ones((att_mask_batch, seq_length, seq_length), |
|
device=data.device)).view(att_mask_batch, 1, seq_length, |
|
seq_length) |
|
|
|
|
|
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device) |
|
if eod_mask_loss: |
|
loss_mask[data == eod_token] = 0.0 |
|
|
|
|
|
position_ids = torch.arange(seq_length, |
|
dtype=torch.long, |
|
device=data.device) |
|
position_ids = position_ids.unsqueeze(0).expand_as(data) |
|
|
|
if reset_position_ids: |
|
position_ids = position_ids.clone() |
|
|
|
if reset_position_ids or reset_attention_mask: |
|
|
|
for b in range(micro_batch_size): |
|
|
|
|
|
eod_index = position_ids[b, data[b] == eod_token] |
|
|
|
if reset_position_ids: |
|
eod_index = eod_index.clone() |
|
|
|
|
|
prev_index = 0 |
|
for j in range(eod_index.size()[0]): |
|
i = eod_index[j] |
|
|
|
if reset_attention_mask: |
|
attention_mask[b, 0, (i + 1):, :(i + 1)] = 0 |
|
|
|
if reset_position_ids: |
|
position_ids[b, (i + 1):] -= i + 1 - prev_index |
|
prev_index = i + 1 |
|
|
|
|
|
attention_mask = attention_mask < 0.5 |
|
|
|
return attention_mask, loss_mask, position_ids |
|
|
|
|
|
def get_batch(context_tokens: torch.LongTensor, eod_id: int): |
|
"""Generate batch from context tokens.""" |
|
|
|
tokens = context_tokens.contiguous().to(context_tokens.device) |
|
|
|
attention_mask, _, position_ids = get_ltor_masks_and_position_ids( |
|
tokens, |
|
eod_id, |
|
reset_position_ids=False, |
|
reset_attention_mask=False, |
|
eod_mask_loss=False, |
|
) |
|
return tokens, attention_mask, position_ids |
|
|
|
|
|
def get_stop_words_ids(chat_format: str, tokenizer: PreTrainedTokenizer): |
|
if chat_format == 'raw': |
|
stop_words_ids = [tokenizer.encode('Human:'), [tokenizer.eod_id]] |
|
elif chat_format == 'chatml': |
|
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]] |
|
else: |
|
raise NotImplementedError(f'Unknown chat format {chat_format!r}') |
|
return stop_words_ids |
|
|
|
|
|
def make_context( |
|
tokenizer: PreTrainedTokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = None, |
|
system: str = '', |
|
max_window_size: int = 6144, |
|
chat_format: str = 'chatml', |
|
): |
|
if history is None: |
|
history = [] |
|
|
|
if chat_format == 'chatml': |
|
im_start, im_end = '<|im_start|>', '<|im_end|>' |
|
im_start_tokens = [tokenizer.im_start_id] |
|
im_end_tokens = [tokenizer.im_end_id] |
|
nl_tokens = tokenizer.encode('\n') |
|
|
|
def _tokenize_str(role, content): |
|
return f'{role}\n{content}', tokenizer.encode( |
|
role, allowed_special=set( |
|
tokenizer.IMAGE_ST)) + nl_tokens + tokenizer.encode( |
|
content, allowed_special=set(tokenizer.IMAGE_ST)) |
|
|
|
system_text, system_tokens_part = _tokenize_str('system', system) |
|
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens |
|
|
|
raw_text = '' |
|
context_tokens = [] |
|
|
|
for turn_query, turn_response in reversed(history): |
|
query_text, query_tokens_part = _tokenize_str('user', turn_query) |
|
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens |
|
if turn_response is not None: |
|
response_text, response_tokens_part = _tokenize_str( |
|
'assistant', turn_response) |
|
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens |
|
|
|
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens |
|
prev_chat = ( |
|
f'\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}' |
|
) |
|
else: |
|
next_context_tokens = nl_tokens + query_tokens + nl_tokens |
|
prev_chat = f'\n{im_start}{query_text}{im_end}\n' |
|
|
|
current_context_size = (len(system_tokens) + |
|
len(next_context_tokens) + |
|
len(context_tokens)) |
|
if current_context_size < max_window_size: |
|
context_tokens = next_context_tokens + context_tokens |
|
raw_text = prev_chat + raw_text |
|
else: |
|
break |
|
|
|
context_tokens = system_tokens + context_tokens |
|
raw_text = f'{im_start}{system_text}{im_end}' + raw_text |
|
context_tokens += (nl_tokens + im_start_tokens + |
|
_tokenize_str('user', query)[1] + im_end_tokens + |
|
nl_tokens + im_start_tokens + |
|
tokenizer.encode('assistant') + nl_tokens) |
|
raw_text += f'\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n' |
|
|
|
elif chat_format == 'raw': |
|
raw_text = query |
|
context_tokens = tokenizer.encode(raw_text) |
|
else: |
|
raise NotImplementedError(f'Unknown chat format {chat_format!r}') |
|
|
|
return raw_text, context_tokens |
|
|
|
|
|
def _decode_default( |
|
tokens: List[int], |
|
*, |
|
stop_words: List[str], |
|
eod_words: List[str], |
|
tokenizer: PreTrainedTokenizer, |
|
raw_text_len: int, |
|
verbose: bool = False, |
|
return_end_reason: bool = False, |
|
errors: str = 'replace', |
|
): |
|
trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:] |
|
if verbose: |
|
print('\nRaw Generate: ', trim_decode_tokens) |
|
|
|
end_reason = f'Gen length {len(tokens)}' |
|
for stop_word in stop_words: |
|
trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip() |
|
for eod_word in eod_words: |
|
if eod_word in trim_decode_tokens: |
|
end_reason = f'Gen {eod_word!r}' |
|
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0] |
|
trim_decode_tokens = trim_decode_tokens.strip() |
|
if verbose: |
|
print('\nEnd Reason:', end_reason) |
|
print('\nGenerate: ', trim_decode_tokens) |
|
|
|
if return_end_reason: |
|
return trim_decode_tokens, end_reason |
|
else: |
|
return trim_decode_tokens |
|
|
|
|
|
def _decode_chatml(tokens: List[int], |
|
*, |
|
stop_words: List[str], |
|
eod_token_ids: List[int], |
|
tokenizer: PreTrainedTokenizer, |
|
raw_text_len: int, |
|
context_length: int, |
|
verbose: bool = False, |
|
return_end_reason: bool = False, |
|
errors: str = 'replace'): |
|
end_reason = f'Gen length {len(tokens)}' |
|
eod_token_idx = context_length |
|
for eod_token_idx in range(context_length, len(tokens)): |
|
if tokens[eod_token_idx] in eod_token_ids: |
|
end_reason = f'Gen {tokenizer.decode([tokens[eod_token_idx]])!r}' |
|
break |
|
|
|
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], |
|
errors=errors)[raw_text_len:] |
|
if verbose: |
|
print('\nRaw Generate w/o EOD:', |
|
tokenizer.decode(tokens, errors=errors)[raw_text_len:]) |
|
print('\nRaw Generate:', trim_decode_tokens) |
|
print('\nEnd Reason:', end_reason) |
|
for stop_word in stop_words: |
|
trim_decode_tokens = trim_decode_tokens.replace(stop_word, '').strip() |
|
trim_decode_tokens = trim_decode_tokens.strip() |
|
if verbose: |
|
print('\nGenerate:', trim_decode_tokens) |
|
|
|
if return_end_reason: |
|
return trim_decode_tokens, end_reason |
|
else: |
|
return trim_decode_tokens |
|
|
|
|
|
def decode_tokens( |
|
tokens: Union[torch.LongTensor, TokensType], |
|
tokenizer: PreTrainedTokenizer, |
|
raw_text_len: int, |
|
context_length: int, |
|
chat_format: str, |
|
verbose: bool = False, |
|
return_end_reason: bool = False, |
|
errors: str = 'replace', |
|
) -> str: |
|
if torch.is_tensor(tokens): |
|
tokens = tokens.cpu().numpy().tolist() |
|
|
|
if chat_format == 'chatml': |
|
return _decode_chatml( |
|
tokens, |
|
stop_words=[], |
|
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id], |
|
tokenizer=tokenizer, |
|
raw_text_len=raw_text_len, |
|
context_length=context_length, |
|
verbose=verbose, |
|
return_end_reason=return_end_reason, |
|
errors=errors, |
|
) |
|
elif chat_format == 'raw': |
|
return _decode_default( |
|
tokens, |
|
stop_words=['<|endoftext|>'], |
|
eod_words=['<|endoftext|>'], |
|
tokenizer=tokenizer, |
|
raw_text_len=raw_text_len, |
|
verbose=verbose, |
|
return_end_reason=return_end_reason, |
|
errors=errors, |
|
) |
|
else: |
|
raise NotImplementedError(f'Unknown chat format {chat_format!r}') |
|
|