|
class QwenVLMMBenchPromptConstructor: |
|
"""MMBench prompt constructor for Qwen-VL. |
|
|
|
The output is a dict following the input format of Qwen-VL tokenizer. |
|
""" |
|
|
|
def __init__(self) -> None: |
|
pass |
|
|
|
def __call__(self, inputs: dict) -> list: |
|
data_samples = inputs['data_samples'] |
|
assert len(data_samples) == 1 |
|
data_sample = data_samples[0] |
|
question = data_sample.get('question') |
|
options = data_sample.get('options') |
|
context = data_sample.get('context') |
|
if context is not None: |
|
prompt = context + ' ' + question + ' ' + options |
|
else: |
|
prompt = question + ' ' + options |
|
format_input = [ |
|
{ |
|
'image': 'This_is_path_to_an_image.' |
|
}, |
|
{ |
|
'text': prompt |
|
}, |
|
] |
|
return format_input |
|
|
|
|
|
class QwenVLChatPromptConstructor: |
|
"""Prompt constructorfor Qwen-VL-Chat.""" |
|
|
|
def __init__(self, prompt='') -> None: |
|
self.prompt = prompt |
|
|
|
def __call__(self, inputs: dict) -> list: |
|
assert len(inputs['data_samples']) == 1 |
|
format_input = [ |
|
{ |
|
'image': 'This_is_path_to_an_image.' |
|
}, |
|
{ |
|
'text': self.prompt |
|
}, |
|
] |
|
return format_input |
|
|
|
|
|
class QwenVLChatVQAPromptConstructor: |
|
"""VQA prompt constructor for Qwen-VL-Chat.""" |
|
|
|
def __init__(self, prompt='') -> None: |
|
self.prompt = prompt |
|
|
|
def __call__(self, inputs: dict) -> list: |
|
data_samples = inputs['data_samples'] |
|
assert len(data_samples) == 1 |
|
data_sample = data_samples[0] |
|
question = data_sample.get('question') |
|
format_input = [ |
|
{ |
|
'image': 'This_is_path_to_an_image.' |
|
}, |
|
{ |
|
'text': question + self.prompt |
|
}, |
|
] |
|
return format_input |
|
|
|
|
|
class QwenVLChatScienceQAPromptConstructor: |
|
"""ScienceQA prompt constructor for Qwen-VL-Chat.""" |
|
choice_mapping = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F'} |
|
|
|
def __init__(self, prompt='') -> None: |
|
self.prompt = prompt |
|
|
|
def __call__(self, inputs: dict) -> list: |
|
data_samples = inputs['data_samples'] |
|
assert len(data_samples) == 1 |
|
data_sample = data_samples[0] |
|
question = data_sample.get('question') |
|
choices = data_sample.get('choices') |
|
choices = [ |
|
f'({self.choice_mapping[i]}) ' + item |
|
for i, item in enumerate(choices) |
|
] |
|
choices = 'Choices: ' + ' '.join(choices) + '\n' |
|
contexts = 'Context: ' + data_sample.get('hint') |
|
format_input = [ |
|
{ |
|
'image': 'This_is_path_to_an_image.' |
|
}, |
|
{ |
|
'text': contexts + question + choices + self.prompt |
|
}, |
|
] |
|
return format_input |
|
|