TwT-6's picture
Upload 2667 files
256a159 verified
raw
history blame
3.14 kB
from collections import defaultdict
from typing import Optional
from mmengine.evaluator import BaseMetric
from opencompass.registry import METRICS
@METRICS.register_module()
class MMEMetric(BaseMetric):
"""Dump model's prediction to a file.
Args:
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Default: None.
"""
task_dict = {
'Perception': [
'existence', 'count', 'position', 'color', 'posters', 'celebrity',
'scene', 'landmark', 'artwork', 'OCR'
],
'Cognition': [
'commonsense_reasoning', 'numerical_calculation',
'text_translation', 'code_reasoning'
]
} # noqa
def __init__(self,
collect_device: str = 'cpu',
prefix: Optional[str] = None) -> None:
super().__init__(collect_device, prefix)
def process(self, data_batch, data_samples) -> None:
for data_sample in data_samples:
result = dict()
result['img_path'] = data_sample['img_path']
result['task'] = data_sample['task']
result['pred'] = 1 if data_sample['answer'].lower(
) == data_sample['pred_answer'].lower() else 0
self.results.append(result)
def compute_metrics(self, results: list) -> dict:
# reorganize results
record = dict()
for task in (self.task_dict['Perception'] +
self.task_dict['Cognition']):
record[task] = defaultdict(int)
for sample in results:
record[sample['task']][sample['img_path']] += sample['pred']
# compute subtask score
metric = dict()
for task in (self.task_dict['Perception'] +
self.task_dict['Cognition']):
single_sum, double_sum = 0., 0.
for v in record[task].values():
assert 0 <= v <= 2
if v == 2:
single_sum += 2
double_sum += 1
elif v == 1:
single_sum += 1
acc = single_sum / 2 / len(record[task])
acc_plus = double_sum / len(record[task])
metric[task] = {
'acc': acc,
'acc_plus': acc_plus,
'score': 100 * (acc + acc_plus)
}
# compute overall score
score = 0
for task in self.task_dict['Perception']:
score += metric[task]['score']
metric['Perception'] = score
score = 0
for task in self.task_dict['Cognition']:
score += metric[task]['score']
metric['Cognition'] = score
metric['Overall'] = metric['Perception'] + metric['Cognition']
return metric