|
"""PPL Inferencer.""" |
|
|
|
import os |
|
from typing import List, Optional |
|
|
|
import mmengine |
|
import torch |
|
from tqdm import tqdm |
|
|
|
from opencompass.models.base import BaseModel |
|
from opencompass.registry import ICL_INFERENCERS |
|
|
|
from ..icl_prompt_template import PromptTemplate |
|
from ..icl_retriever import BaseRetriever |
|
from ..utils import get_logger |
|
from .icl_base_inferencer import BaseInferencer, dump_results_dict |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
@ICL_INFERENCERS.register_module() |
|
class PPLOnlyInferencer(BaseInferencer): |
|
"""PPLOnlyInferencer class to calculate PPL and PPL only, no choice is |
|
made. This Inferencer is usually used along with AveragePPLEvaluator. |
|
|
|
Attributes: |
|
model (:obj:`BaseModel`, optional): The module to inference. |
|
max_seq_len (:obj:`int`): Maximum number of tokenized words allowed by |
|
the LM. |
|
batch_size (:obj:`int`, optional): Batch size for the :obj:`DataLoader` |
|
output_json_filepath (:obj:`str`, optional): File path for output |
|
`JSON` file. |
|
output_json_filename (:obj:`str`, optional): File name for output |
|
`JSON` file. |
|
save_every (:obj:`int`, optional): Save intermediate results every |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model: BaseModel, |
|
max_seq_len: Optional[int] = None, |
|
batch_size: Optional[int] = 1, |
|
output_json_filepath: Optional[str] = './icl_inference_output', |
|
output_json_filename: Optional[str] = 'predictions', |
|
save_every: Optional[int] = 1, |
|
**kwargs) -> None: |
|
super().__init__( |
|
model=model, |
|
max_seq_len=max_seq_len, |
|
batch_size=batch_size, |
|
output_json_filename=output_json_filename, |
|
output_json_filepath=output_json_filepath, |
|
**kwargs, |
|
) |
|
|
|
self.save_every = save_every |
|
|
|
def inference(self, |
|
retriever: BaseRetriever, |
|
ice_template: Optional[PromptTemplate] = None, |
|
prompt_template: Optional[PromptTemplate] = None, |
|
output_json_filepath: Optional[str] = None, |
|
output_json_filename: Optional[str] = None) -> List: |
|
|
|
output_handler = PPLOnlyInferencerOutputHandler() |
|
|
|
if output_json_filepath is None: |
|
output_json_filepath = self.output_json_filepath |
|
if output_json_filename is None: |
|
output_json_filename = self.output_json_filename |
|
|
|
|
|
ice_idx_list = retriever.retrieve() |
|
|
|
|
|
prompt_list = self.get_generation_prompt_list_from_retriever_indices( |
|
ice_idx_list, |
|
retriever, |
|
max_seq_len=self.max_seq_len, |
|
ice_template=ice_template, |
|
prompt_template=prompt_template) |
|
|
|
|
|
ds_reader = retriever.dataset_reader |
|
|
|
assert ds_reader.output_column is None, ( |
|
'PPLOnlyInferencer supports `output_column=None` only.') |
|
|
|
|
|
|
|
index = 0 |
|
tmp_json_filepath = os.path.join(output_json_filepath, |
|
'tmp_' + output_json_filename) |
|
if os.path.exists(tmp_json_filepath): |
|
|
|
try: |
|
tmp_result_dict = mmengine.load(tmp_json_filepath) |
|
except Exception: |
|
pass |
|
else: |
|
output_handler.results_dict = tmp_result_dict |
|
index = len(tmp_result_dict) |
|
|
|
|
|
dataloader = self.get_dataloader(prompt_list[index:], self.batch_size) |
|
|
|
|
|
logger.info('Starting inference process...') |
|
for datum in tqdm(dataloader, disable=not self.is_main_process): |
|
entry = datum |
|
|
|
with torch.no_grad(): |
|
ppls = self.model.get_ppl_from_template(entry).tolist() |
|
|
|
parsed_entries = self.model.parse_template(entry, mode='gen') |
|
|
|
for prompt, ppl, in zip(parsed_entries, ppls): |
|
output_handler.save_results(prompt, ppl, index) |
|
index = index + 1 |
|
|
|
|
|
if (self.save_every is not None and index % self.save_every == 0 |
|
and self.is_main_process): |
|
output_handler.write_to_json(output_json_filepath, |
|
'tmp_' + output_json_filename) |
|
|
|
|
|
if self.is_main_process: |
|
os.makedirs(output_json_filepath, exist_ok=True) |
|
output_handler.write_to_json(output_json_filepath, |
|
output_json_filename) |
|
if os.path.exists(tmp_json_filepath): |
|
os.remove(tmp_json_filepath) |
|
|
|
return [ |
|
sample['ppl'] for sample in output_handler.results_dict.values() |
|
] |
|
|
|
def get_generation_prompt_list_from_retriever_indices( |
|
self, |
|
ice_idx_list: List[List[int]], |
|
retriever: BaseRetriever, |
|
max_seq_len: Optional[int] = None, |
|
ice_template: Optional[PromptTemplate] = None, |
|
prompt_template: Optional[PromptTemplate] = None): |
|
prompt_list = [] |
|
for idx, ice_idx in enumerate(ice_idx_list): |
|
ice = retriever.generate_ice(ice_idx, ice_template=ice_template) |
|
prompt = retriever.generate_prompt_for_generate_task( |
|
idx, |
|
ice, |
|
ice_template=ice_template, |
|
prompt_template=prompt_template) |
|
if max_seq_len is not None: |
|
prompt_token_num = self.model.get_token_len_from_template( |
|
prompt, mode='gen') |
|
while len(ice_idx) > 0 and prompt_token_num > max_seq_len: |
|
ice_idx = ice_idx[:-1] |
|
ice = retriever.generate_ice(ice_idx, |
|
ice_template=ice_template) |
|
prompt = retriever.generate_prompt_for_generate_task( |
|
idx, |
|
ice, |
|
ice_template=ice_template, |
|
prompt_template=prompt_template) |
|
prompt_token_num = self.model.get_token_len_from_template( |
|
prompt, mode='gen') |
|
prompt_list.append(prompt) |
|
return prompt_list |
|
|
|
|
|
class PPLOnlyInferencerOutputHandler: |
|
origin_prompt_dict = {} |
|
output_dict = {} |
|
results_dict = {} |
|
|
|
def __init__(self) -> None: |
|
self.results_dict = {} |
|
|
|
def write_to_json(self, save_dir: str, filename: str): |
|
"""Dump the result to a json file.""" |
|
dump_results_dict(self.results_dict, os.path.join(save_dir, filename)) |
|
|
|
def save_results(self, origin_prompt, ppl, idx): |
|
self.results_dict[str(idx)] = { |
|
'origin_prompt': origin_prompt, |
|
'ppl': ppl, |
|
} |
|
|