|
import datetime |
|
import json |
|
import os |
|
import os.path as osp |
|
import random |
|
import re |
|
import subprocess |
|
import sys |
|
import time |
|
from functools import partial |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import mmengine |
|
from mmengine.config import ConfigDict |
|
from mmengine.utils import track_parallel_progress |
|
|
|
from opencompass.registry import RUNNERS, TASKS |
|
from opencompass.utils import get_logger |
|
|
|
from .base import BaseRunner |
|
|
|
|
|
@RUNNERS.register_module() |
|
class DLCRunner(BaseRunner): |
|
"""Distributed runner based on Alibaba Cloud Deep Learning Cluster (DLC). |
|
It will launch multiple tasks in parallel with 'dlc' command. Please |
|
install and configure DLC first before using this runner. |
|
|
|
Args: |
|
task (ConfigDict): Task type config. |
|
aliyun_cfg (ConfigDict): Alibaba Cloud config. |
|
max_num_workers (int): Max number of workers. Default: 32. |
|
retry (int): Number of retries when job failed. Default: 2. |
|
debug (bool): Whether to run in debug mode. Default: False. |
|
lark_bot_url (str): Lark bot url. Default: None. |
|
""" |
|
|
|
def __init__(self, |
|
task: ConfigDict, |
|
aliyun_cfg: ConfigDict, |
|
max_num_workers: int = 32, |
|
eval_with_gpu: list = ['plugin_eval'], |
|
retry: int = 2, |
|
debug: bool = False, |
|
lark_bot_url: str = None): |
|
super().__init__(task=task, debug=debug, lark_bot_url=lark_bot_url) |
|
self.aliyun_cfg = aliyun_cfg |
|
self.max_num_workers = max_num_workers |
|
self.retry = retry |
|
|
|
self.eval_with_gpu = eval_with_gpu |
|
|
|
logger = get_logger() |
|
logger.warning( |
|
'To ensure the integrity of the log results, the log displayed ' |
|
f'by {self.__class__.__name__} has a 10-second delay.') |
|
|
|
def launch(self, tasks: List[Dict[str, Any]]) -> List[Tuple[str, int]]: |
|
"""Launch multiple tasks. |
|
|
|
Args: |
|
tasks (list[dict]): A list of task configs, usually generated by |
|
Partitioner. |
|
|
|
Returns: |
|
list[tuple[str, int]]: A list of (task name, exit code). |
|
""" |
|
|
|
if not self.debug: |
|
status = track_parallel_progress(self._launch, |
|
tasks, |
|
nproc=self.max_num_workers, |
|
keep_order=False) |
|
else: |
|
status = [self._launch(task, random_sleep=False) for task in tasks] |
|
return status |
|
|
|
def _launch(self, cfg: ConfigDict, random_sleep: Optional[bool] = None): |
|
"""Launch a single task. |
|
|
|
Args: |
|
cfg (ConfigDict): Task config. |
|
random_sleep (bool): Whether to sleep for a random time before |
|
running the command. When Aliyun has many tasks to schedule, |
|
its stability decreases. Therefore, when we need to submit a |
|
large number of tasks at once, we adopt the "random_sleep" |
|
strategy. Tasks that would have been submitted all at once are |
|
now evenly spread out over a 10-second period. Default: None. |
|
|
|
Returns: |
|
tuple[str, int]: Task name and exit code. |
|
""" |
|
if random_sleep is None: |
|
random_sleep = (self.max_num_workers > 32) |
|
|
|
task = TASKS.build(dict(cfg=cfg, type=self.task_cfg['type'])) |
|
num_gpus = task.num_gpus |
|
task_name = task.name |
|
|
|
is_eval_task = 'OpenICLEval' in task_name |
|
if is_eval_task and num_gpus == 0: |
|
for check_name in self.eval_with_gpu: |
|
if check_name in task_name: |
|
num_gpus = 1 |
|
break |
|
|
|
|
|
mmengine.mkdir_or_exist('tmp/') |
|
param_file = f'tmp/{os.getpid()}_params.py' |
|
pwd = os.getcwd() |
|
try: |
|
cfg.dump(param_file) |
|
if self.aliyun_cfg.get('bashrc_path') is not None: |
|
|
|
bashrc_path = self.aliyun_cfg['bashrc_path'] |
|
assert osp.exists(bashrc_path) |
|
assert self.aliyun_cfg.get('conda_env_name') is not None |
|
conda_env_name = self.aliyun_cfg['conda_env_name'] |
|
shell_cmd = (f'source {bashrc_path}; ' |
|
f'conda activate {conda_env_name}; ') |
|
else: |
|
|
|
|
|
|
|
assert self.aliyun_cfg.get('python_env_path') is not None |
|
shell_cmd = ( |
|
f'export PATH={self.aliyun_cfg["python_env_path"]}/bin:$PATH; ' |
|
f'export PYTHONPATH={pwd}:$PYTHONPATH; ') |
|
|
|
huggingface_cache = self.aliyun_cfg.get('huggingface_cache') |
|
if huggingface_cache is not None: |
|
|
|
|
|
shell_cmd += f'export HF_HUB_CACHE={huggingface_cache}; ' |
|
shell_cmd += f'export HUGGINGFACE_HUB_CACHE={huggingface_cache}; ' |
|
|
|
torch_cache = self.aliyun_cfg.get('torch_cache') |
|
if torch_cache is not None: |
|
shell_cmd += f'export TORCH_HOME={torch_cache}; ' |
|
|
|
hf_offline = self.aliyun_cfg.get('hf_offline', True) |
|
if hf_offline: |
|
shell_cmd += 'export HF_DATASETS_OFFLINE=1; export TRANSFORMERS_OFFLINE=1; export HF_EVALUATE_OFFLINE=1; ' |
|
|
|
http_proxy = self.aliyun_cfg.get('http_proxy') |
|
if http_proxy is not None: |
|
shell_cmd += f'export http_proxy={http_proxy}; export https_proxy={http_proxy}; ' |
|
shell_cmd += f'export HTTP_PROXY={http_proxy}; export HTTPS_PROXY={http_proxy}; ' |
|
|
|
hf_endpoint = self.aliyun_cfg.get('hf_endpoint') |
|
if hf_endpoint is not None: |
|
shell_cmd += f'export HF_ENDPOINT={hf_endpoint}; ' |
|
|
|
shell_cmd += f'cd {pwd}; ' |
|
shell_cmd += '{task_cmd}' |
|
|
|
tmpl = ('dlc create job' |
|
f" --command '{shell_cmd}'" |
|
f' --name {task_name[:512]}' |
|
' --kind BatchJob' |
|
f" -c {self.aliyun_cfg['dlc_config_path']}" |
|
f" --workspace_id {self.aliyun_cfg['workspace_id']}" |
|
' --worker_count 1' |
|
f' --worker_cpu {max(num_gpus * 8, 32)}' |
|
f' --worker_gpu {num_gpus}' |
|
f' --worker_memory {max(num_gpus * 128, 256)}' |
|
f" --worker_image {self.aliyun_cfg['worker_image']}") |
|
get_cmd = partial(task.get_command, |
|
cfg_path=param_file, |
|
template=tmpl) |
|
cmd = get_cmd() |
|
|
|
logger = get_logger() |
|
logger.debug(f'Running command: {cmd}') |
|
|
|
|
|
if self.debug: |
|
stdout = sys.stdout |
|
else: |
|
out_path = task.get_log_path(file_extension='out') |
|
mmengine.mkdir_or_exist(osp.split(out_path)[0]) |
|
stdout = open(out_path, 'w', encoding='utf-8') |
|
|
|
if random_sleep: |
|
time.sleep(random.randint(0, 10)) |
|
|
|
def _run_within_retry(): |
|
output = subprocess.getoutput(cmd) |
|
match = re.search(r'\|\s+(dlc[0-9a-z]+)\s+\|', output) |
|
if match is None: |
|
raise RuntimeError( |
|
f'Failed to launch dlc job for {output}') |
|
else: |
|
job_id = match.group(1) |
|
stdout.write(output) |
|
|
|
pod_create_time = None |
|
pri_time = None |
|
initial_time = datetime.datetime.now() |
|
while True: |
|
|
|
|
|
for _ in range(5): |
|
time.sleep(2) |
|
try: |
|
job_info = json.loads( |
|
subprocess.getoutput(f'dlc get job {job_id}')) |
|
break |
|
except: |
|
pass |
|
else: |
|
raise RuntimeError( |
|
f'Failed to get job info for {job_id}') |
|
|
|
status = job_info['Status'] |
|
if status == 'Failed': |
|
return -1 |
|
elif status == 'Succeeded': |
|
return 0 |
|
elif status != 'Running': |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
if pod_create_time is None: |
|
pod_create_time = job_info['GmtCreateTime'] |
|
pri_time = pod_create_time |
|
pod_create_time = datetime.datetime.strptime( |
|
pod_create_time, '%Y-%m-%dT%H:%M:%SZ') |
|
elasped_time = datetime.datetime.now() - initial_time |
|
cur_time = (pod_create_time + |
|
elasped_time).strftime('%Y-%m-%dT%H:%M:%SZ') |
|
logs_cmd = ('dlc logs' |
|
f' {job_id} {job_id}-worker-0' |
|
f" -c {self.aliyun_cfg['dlc_config_path']}" |
|
f' --start_time {pri_time}' |
|
f' --end_time {cur_time}') |
|
log_output = subprocess.getoutput(logs_cmd) |
|
|
|
if '[WARN] No logs found for the pod' not in log_output: |
|
pri_time = cur_time |
|
stdout.write(log_output) |
|
stdout.flush() |
|
|
|
return_code = _run_within_retry() |
|
retry = self.retry |
|
output_paths = task.get_output_paths() |
|
while self._job_failed(return_code, output_paths) and retry > 0: |
|
retry -= 1 |
|
cmd = get_cmd() |
|
return_code = _run_within_retry() |
|
finally: |
|
|
|
os.remove(param_file) |
|
|
|
return task_name, return_code |
|
|
|
def _job_failed(self, return_code: int, output_paths: List[str]) -> bool: |
|
return return_code != 0 or not all( |
|
osp.exists(output_path) for output_path in output_paths) |
|
|