TwT-6's picture
Upload 2667 files
256a159 verified
import os
from typing import List, Union
import tabulate
from mmengine.config import Config
from opencompass.datasets.custom import make_custom_dataset_config
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.runners import DLCRunner, LocalRunner, SlurmRunner
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask
from opencompass.utils import get_logger, match_files
def match_cfg_file(workdir: str, pattern: Union[str, List[str]]) -> List[str]:
"""Match the config file in workdir recursively given the pattern.
Additionally, if the pattern itself points to an existing file, it will be
directly returned.
"""
if isinstance(pattern, str):
pattern = [pattern]
pattern = [p + '.py' if not p.endswith('.py') else p for p in pattern]
files = match_files(workdir, pattern, fuzzy=False)
if len(files) != len(pattern):
nomatched = []
ambiguous = []
err_msg = ('The provided pattern matches 0 or more than one '
'config. Please verify your pattern and try again. '
'You may use tools/list_configs.py to list or '
'locate the configurations.\n')
for p in pattern:
files = match_files(workdir, p, fuzzy=False)
if len(files) == 0:
nomatched.append([p[:-3]])
elif len(files) > 1:
ambiguous.append([p[:-3], '\n'.join(f[1] for f in files)])
if nomatched:
table = [['Not matched patterns'], *nomatched]
err_msg += tabulate.tabulate(table,
headers='firstrow',
tablefmt='psql')
if ambiguous:
table = [['Ambiguous patterns', 'Matched files'], *ambiguous]
err_msg += tabulate.tabulate(table,
headers='firstrow',
tablefmt='psql')
raise ValueError(err_msg)
return files
def get_config_from_arg(args) -> Config:
"""Get the config object given args.
Only a few argument combinations are accepted (priority from high to low)
1. args.config
2. args.models and args.datasets
3. Huggingface parameter groups and args.datasets
"""
if args.config:
config = Config.fromfile(args.config, format_python_code=False)
for i, dataset in enumerate(config['datasets']):
if 'type' not in dataset:
config['datasets'][i] = make_custom_dataset_config(dataset)
return config
# parse dataset args
if not args.datasets and not args.custom_dataset_path:
raise ValueError('You must specify "--datasets" or '
'"--custom-dataset-path" if you do not specify a '
'config file path.')
datasets = []
if args.datasets:
datasets_dir = os.path.join(args.config_dir, 'datasets')
for dataset in match_cfg_file(datasets_dir, args.datasets):
get_logger().info(f'Loading {dataset[0]}: {dataset[1]}')
cfg = Config.fromfile(dataset[1])
for k in cfg.keys():
if k.endswith('_datasets'):
datasets += cfg[k]
else:
dataset = {'path': args.custom_dataset_path}
if args.custom_dataset_infer_method is not None:
dataset['infer_method'] = args.custom_dataset_infer_method
if args.custom_dataset_data_type is not None:
dataset['data_type'] = args.custom_dataset_data_type
if args.custom_dataset_meta_path is not None:
dataset['meta_path'] = args.custom_dataset_meta_path
dataset = make_custom_dataset_config(dataset)
datasets.append(dataset)
# parse model args
if not args.models and not args.hf_path:
raise ValueError('You must specify a config file path, '
'or specify --models and --datasets, or '
'specify HuggingFace model parameters and '
'--datasets.')
models = []
if args.models:
model_dir = os.path.join(args.config_dir, 'models')
for model in match_cfg_file(model_dir, args.models):
get_logger().info(f'Loading {model[0]}: {model[1]}')
cfg = Config.fromfile(model[1])
if 'models' not in cfg:
raise ValueError(
f'Config file {model[1]} does not contain "models" field')
models += cfg['models']
else:
from opencompass.models import HuggingFace
model = dict(type=f'{HuggingFace.__module__}.{HuggingFace.__name__}',
path=args.hf_path,
peft_path=args.peft_path,
tokenizer_path=args.tokenizer_path,
model_kwargs=args.model_kwargs,
tokenizer_kwargs=args.tokenizer_kwargs,
max_seq_len=args.max_seq_len,
max_out_len=args.max_out_len,
batch_padding=not args.no_batch_padding,
batch_size=args.batch_size,
pad_token_id=args.pad_token_id,
run_cfg=dict(num_gpus=args.num_gpus))
models.append(model)
# parse summarizer args
summarizer = args.summarizer if args.summarizer is not None else 'example'
summarizers_dir = os.path.join(args.config_dir, 'summarizers')
s = match_cfg_file(summarizers_dir, [summarizer])[0]
get_logger().info(f'Loading {s[0]}: {s[1]}')
cfg = Config.fromfile(s[1])
summarizer = cfg['summarizer']
return Config(dict(models=models, datasets=datasets,
summarizer=summarizer),
format_python_code=False)
def exec_mm_infer_runner(tasks, args, cfg):
"""execute multimodal infer runner according to args."""
if args.slurm:
runner = SlurmRunner(dict(type='MultimodalInferTask'),
max_num_workers=args.max_num_workers,
partition=args.partition,
quotatype=args.quotatype,
retry=args.retry,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
elif args.dlc:
raise NotImplementedError('Currently, we do not support evaluating \
multimodal models on dlc.')
else:
runner = LocalRunner(task=dict(type='MultimodalInferTask'),
max_num_workers=args.max_num_workers,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
runner(tasks)
def get_config_type(obj) -> str:
return f'{obj.__module__}.{obj.__name__}'
def fill_infer_cfg(cfg, args):
new_cfg = dict(infer=dict(
partitioner=dict(type=get_config_type(SizePartitioner),
max_task_size=args.max_partition_size,
gen_task_coef=args.gen_task_coef),
runner=dict(
max_num_workers=args.max_num_workers,
debug=args.debug,
task=dict(type=get_config_type(OpenICLInferTask)),
lark_bot_url=cfg['lark_bot_url'],
)), )
if args.slurm:
new_cfg['infer']['runner']['type'] = get_config_type(SlurmRunner)
new_cfg['infer']['runner']['partition'] = args.partition
new_cfg['infer']['runner']['quotatype'] = args.quotatype
new_cfg['infer']['runner']['qos'] = args.qos
new_cfg['infer']['runner']['retry'] = args.retry
elif args.dlc:
new_cfg['infer']['runner']['type'] = get_config_type(DLCRunner)
new_cfg['infer']['runner']['aliyun_cfg'] = Config.fromfile(
args.aliyun_cfg)
new_cfg['infer']['runner']['retry'] = args.retry
else:
new_cfg['infer']['runner']['type'] = get_config_type(LocalRunner)
new_cfg['infer']['runner'][
'max_workers_per_gpu'] = args.max_workers_per_gpu
cfg.merge_from_dict(new_cfg)
def fill_eval_cfg(cfg, args):
new_cfg = dict(
eval=dict(partitioner=dict(type=get_config_type(NaivePartitioner)),
runner=dict(
max_num_workers=args.max_num_workers,
debug=args.debug,
task=dict(type=get_config_type(OpenICLEvalTask)),
lark_bot_url=cfg['lark_bot_url'],
)))
if args.slurm:
new_cfg['eval']['runner']['type'] = get_config_type(SlurmRunner)
new_cfg['eval']['runner']['partition'] = args.partition
new_cfg['eval']['runner']['quotatype'] = args.quotatype
new_cfg['eval']['runner']['qos'] = args.qos
new_cfg['eval']['runner']['retry'] = args.retry
elif args.dlc:
new_cfg['eval']['runner']['type'] = get_config_type(DLCRunner)
new_cfg['eval']['runner']['aliyun_cfg'] = Config.fromfile(
args.aliyun_cfg)
new_cfg['eval']['runner']['retry'] = args.retry
else:
new_cfg['eval']['runner']['type'] = get_config_type(LocalRunner)
new_cfg['eval']['runner'][
'max_workers_per_gpu'] = args.max_workers_per_gpu
cfg.merge_from_dict(new_cfg)