|
from mmengine.config import read_base |
|
from opencompass.models import ZhiPuAI |
|
from opencompass.partitioners import NaivePartitioner |
|
from opencompass.runners.local_api import LocalAPIRunner |
|
from opencompass.tasks import OpenICLInferTask |
|
|
|
with read_base(): |
|
|
|
from ..summarizers.medium import summarizer |
|
from ..datasets.ceval.ceval_gen import ceval_datasets |
|
|
|
datasets = [ |
|
*ceval_datasets, |
|
] |
|
|
|
|
|
|
|
from opencompass.utils import general_eval_wrapper_postprocess |
|
for _dataset in datasets: |
|
if _dataset['abbr'] not in ['gsm8k', 'strategyqa']: |
|
if hasattr(_dataset['eval_cfg'], 'pred_postprocessor'): |
|
_dataset['eval_cfg']['pred_postprocessor']['postprocess'] = _dataset['eval_cfg']['pred_postprocessor']['type'] |
|
_dataset['eval_cfg']['pred_postprocessor']['type'] = general_eval_wrapper_postprocess |
|
else: |
|
_dataset['eval_cfg']['pred_postprocessor'] = {'type': general_eval_wrapper_postprocess} |
|
|
|
models = [ |
|
dict( |
|
abbr='chatglm_pro', |
|
type=ZhiPuAI, |
|
path='chatglm_pro', |
|
key='xxxxxxxxxxxx', |
|
query_per_second=1, |
|
max_out_len=2048, |
|
max_seq_len=2048, |
|
batch_size=8), |
|
] |
|
|
|
infer = dict( |
|
partitioner=dict(type=NaivePartitioner), |
|
runner=dict( |
|
type=LocalAPIRunner, |
|
max_num_workers=2, |
|
concurrent_users=2, |
|
task=dict(type=OpenICLInferTask)), |
|
) |
|
|
|
work_dir = "outputs/api_zhipu/" |