|
from opencompass.openicl.icl_prompt_template import PromptTemplate |
|
from opencompass.openicl.icl_retriever import FixKRetriever |
|
from opencompass.openicl.icl_inferencer import PPLInferencer |
|
from opencompass.openicl.icl_evaluator import AccEvaluator |
|
from opencompass.datasets import HFDataset |
|
|
|
|
|
_hint = "The following are text classification questions. \n" \ |
|
"Please determine whether the following sentence is linguistically acceptable: " \ |
|
"0 means unacceptable, 1 means acceptable.\n" |
|
|
|
CoLA_infer_cfg = dict( |
|
ice_template=dict( |
|
type=PromptTemplate, |
|
template="Sentence: {sentence}\nResult: {label}", |
|
), |
|
prompt_template=dict( |
|
type=PromptTemplate, |
|
template={ |
|
answer: |
|
f"{_hint}</E>Sentence: {{sentence}}\nResult: {answer}" |
|
for answer in [0, 1] |
|
}, |
|
ice_token='</E>', |
|
), |
|
retriever=dict(type=FixKRetriever, fix_id_list=[17, 18, 19, 20, 21]), |
|
inferencer=dict(type=PPLInferencer)) |
|
|
|
CoLA_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) |
|
|
|
CoLA_datasets = [] |
|
for _split in ["validation"]: |
|
|
|
CoLA_reader_cfg = dict( |
|
input_columns=['sentence'], |
|
output_column='label', |
|
test_split=_split |
|
) |
|
|
|
CoLA_datasets.append( |
|
dict( |
|
abbr=f'CoLA-{_split}', |
|
type=HFDataset, |
|
path='glue', |
|
name='cola', |
|
reader_cfg=CoLA_reader_cfg, |
|
infer_cfg=CoLA_infer_cfg, |
|
eval_cfg=CoLA_eval_cfg |
|
) |
|
) |
|
|