TwT-6's picture
Upload 2667 files
256a159 verified
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
_hint = "The following are semantic matching questions. \n" \
"Please determine whether the following two sentences are semantically equivalent: " \
"0 means not equivalent, 1 means equivalent.\n"
MRPC_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template="Sentence one: {sentence1}\nSentence two: {sentence2}\nResult: {label}",
),
prompt_template=dict(
type=PromptTemplate,
template={
answer:
f"{_hint}</E>Sentence one: {{sentence1}}\nSentence two: {{sentence2}}\nResult: {answer}"
for answer in [0, 1]
},
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer))
MRPC_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
MRPC_datasets = []
for _split in ["validation", "test"]:
MRPC_reader_cfg = dict(
input_columns=['sentence1', 'sentence2'],
output_column='label',
train_split="train",
test_split=_split
)
MRPC_datasets.append(
dict(
abbr=f'MRPC-{_split}',
type=HFDataset,
path='glue',
name='mrpc',
reader_cfg=MRPC_reader_cfg,
infer_cfg=MRPC_infer_cfg,
eval_cfg=MRPC_eval_cfg
)
)