|
from opencompass.openicl.icl_prompt_template import PromptTemplate |
|
from opencompass.openicl.icl_retriever import ZeroRetriever |
|
from opencompass.openicl.icl_inferencer import GenInferencer |
|
from opencompass.datasets import (DS1000Dataset, ds1000_postprocess, |
|
ds1000_matplotlib_postprocess, |
|
DS1000Evaluator) |
|
|
|
ds1000_reader_cfg = dict( |
|
input_columns=["prompt"], |
|
output_column="test_column", |
|
train_split='test', |
|
test_split='test') |
|
|
|
ds1000_infer_cfg = dict( |
|
prompt_template=dict( |
|
type=PromptTemplate, |
|
template=dict(round=[ |
|
dict( |
|
role="HUMAN", |
|
prompt="{prompt}", |
|
), |
|
]), |
|
), |
|
retriever=dict(type=ZeroRetriever), |
|
inferencer=dict(type=GenInferencer), |
|
) |
|
|
|
ds1000_eval_cfg = dict( |
|
evaluator=dict(type=DS1000Evaluator), |
|
pred_role="BOT", |
|
pred_postprocessor=dict(type=ds1000_postprocess), |
|
) |
|
|
|
|
|
|
|
ds1000_datasets = [ |
|
dict( |
|
abbr=f"ds1000_{lib}", |
|
type=DS1000Dataset, |
|
path="./data/ds1000_data/", |
|
libs=f"{lib}", |
|
reader_cfg=ds1000_reader_cfg, |
|
infer_cfg=ds1000_infer_cfg, |
|
eval_cfg=ds1000_eval_cfg, |
|
) for lib in [ |
|
'Pandas', |
|
'Numpy', |
|
'Tensorflow', |
|
'Scipy', |
|
'Sklearn', |
|
'Pytorch', |
|
] |
|
] |
|
ds1000_datasets.append( |
|
dict( |
|
abbr="ds1000_Matplotlib", |
|
type=DS1000Dataset, |
|
path="./data/ds1000_data/", |
|
libs="Matplotlib", |
|
reader_cfg=ds1000_reader_cfg, |
|
infer_cfg=ds1000_infer_cfg, |
|
eval_cfg=dict( |
|
evaluator=dict(type=DS1000Evaluator), |
|
pred_role="BOT", |
|
pred_postprocessor=dict(type=ds1000_matplotlib_postprocess), |
|
), |
|
)) |
|
|