|
|
|
|
|
from mmengine.config import read_base |
|
from opencompass.partitioners import SizePartitioner |
|
from opencompass.models import HuggingFaceCausalLM |
|
from opencompass.runners import LocalRunner |
|
from opencompass.partitioners import SizePartitioner |
|
from opencompass.tasks import OpenICLInferTask |
|
|
|
with read_base(): |
|
from .datasets.humaneval.humaneval_passk_gen_8e312c import humaneval_datasets |
|
from .datasets.mbpp.mbpp_passk_gen_1e1056 import mbpp_datasets |
|
from .datasets.mbpp.sanitized_mbpp_passk_gen_1e1056 import sanitized_mbpp_datasets |
|
|
|
datasets = [] |
|
datasets += humaneval_datasets |
|
datasets += mbpp_datasets |
|
datasets += sanitized_mbpp_datasets |
|
|
|
models = [ |
|
dict( |
|
type=HuggingFaceCausalLM, |
|
abbr='CodeLlama-7b-Python', |
|
path="codellama/CodeLlama-7b-Python-hf", |
|
tokenizer_path='codellama/CodeLlama-7b-Python-hf', |
|
tokenizer_kwargs=dict( |
|
padding_side='left', |
|
truncation_side='left', |
|
trust_remote_code=True, |
|
), |
|
max_out_len=1024, |
|
max_seq_len=2048, |
|
batch_size=8, |
|
model_kwargs=dict(trust_remote_code=True, device_map='auto'), |
|
generation_kwargs=dict( |
|
num_return_sequences=10, |
|
do_sample=True, |
|
top_p=0.95, |
|
temperature=0.8, |
|
), |
|
run_cfg=dict(num_gpus=1, num_procs=1), |
|
), |
|
] |
|
|
|
|
|
infer = dict( |
|
partitioner=dict(type=SizePartitioner, max_task_size=300), |
|
runner=dict( |
|
type=LocalRunner, max_num_workers=16, |
|
task=dict(type=OpenICLInferTask)), |
|
) |
|
|