|
from mmengine.config import read_base |
|
from opencompass.partitioners import SizePartitioner |
|
from opencompass.runners import LocalRunner |
|
from opencompass.tasks import OpenICLInferTask |
|
from opencompass.models import OpenAI, HuggingFaceCausalLM |
|
from opencompass.models.lagent import CodeAgent |
|
|
|
with read_base(): |
|
from .datasets.math.math_gen_943d32 import math_datasets |
|
from .datasets.gsm8k.gsm8k_gen_57b0b1 import gsm8k_datasets |
|
|
|
datasets = [] |
|
datasets += gsm8k_datasets |
|
datasets += math_datasets |
|
|
|
models = [ |
|
dict( |
|
abbr='gpt-3.5-react', |
|
type=CodeAgent, |
|
llm=dict( |
|
type=OpenAI, |
|
path='gpt-3.5-turbo', |
|
key='ENV', |
|
query_per_second=1, |
|
max_seq_len=4096, |
|
), |
|
batch_size=8), |
|
dict( |
|
abbr='WizardCoder-Python-13B-V1.0-react', |
|
type=CodeAgent, |
|
llm=dict( |
|
type=HuggingFaceCausalLM, |
|
path="WizardLM/WizardCoder-Python-13B-V1.0", |
|
tokenizer_path='WizardLM/WizardCoder-Python-13B-V1.0', |
|
tokenizer_kwargs=dict( |
|
padding_side='left', |
|
truncation_side='left', |
|
trust_remote_code=True, |
|
), |
|
max_seq_len=2048, |
|
model_kwargs=dict(trust_remote_code=True, device_map='auto'), |
|
), |
|
batch_size=8, |
|
run_cfg=dict(num_gpus=2, num_procs=1)), |
|
] |
|
|
|
infer = dict( |
|
partitioner=dict(type=SizePartitioner, max_task_size=40000), |
|
runner=dict( |
|
type=LocalRunner, max_num_workers=16, |
|
task=dict(type=OpenICLInferTask)), |
|
) |
|
|